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Abstract 

Laser range finders (LRF’s) are non-invasive sensors which can be used for 

high-precision, anonymous tracking of pedestrians in social environments. Such sensor 

networks can be used in robotics to assist in navigation and human-robot interaction. 

Typically, multiple LRF’s are used together for such tasks, and the relative positions of 

these sensors must be precisely calibrated. We propose a technique for estimating relative 

LRF positions by using observations of social groups in the pedestrian flow as keypoint 

features for determining coarse estimates of relative sensor offsets. The most likely offset is 

estimated using a generalized Hough transform and used to identify sets of possible shared 

observations of individual pedestrians between pairs of sensors. Outliers are rejected using 

the RANSAC technique, and the resulting shared observations from each sensor pair are 

combined into a constraint matrix for the sensor network, which is solved using 

least-squares minimization. Results show calibration accuracy of sensor positions within 

34mm and 0.51 degrees, and an analysis of pedestrian data collected from ubiquitous 

networks in three public and commercial spaces shows that the proposed calibration 

technique enables pedestrian tracking within 11 cm accuracy. 

 

Keywords: Sensor calibration, laser range finders, pedestrian tracking, social groups, ubiquitous 
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1. INTRODUCTION 

In recent years, laser range finders (LRF’s) have enjoyed great popularity as a sensor of choice in 

ubiquitous networks for the tracking of pedestrian motion in social spaces. Research groups around 

the world have used LRF-based tracking to study human motion [1-4] and in conjunction with robots, 

to enable safe human-robot interaction in populated environments [5-7]. 

For pedestrian tracking, laser range finders offer many advantages over other types of sensors. 

Their non-invasiveness is a great advantage; installing hardware such as floor pressure sensors can be 

disruptive to public and commercial spaces, and requiring people to carry tags or handheld devices 

often requires active intervention in the social system being studied. While video is sometimes used as 
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a tracking tool, LRF’s provide much higher measurement accuracy and require far less data 

processing. Additionally, LRFs output only anonymous range values, presenting less of a privacy 

concern than video cameras. While these benefits must be balanced against the cost of the sensors, 

they remain a popular tool for analyzing human motion in high-traffic public spaces. 

LRF’s have often been used for human tracking, such as in the work by Fod et al., which combines 

data from multiple LRF’s [1], the work by Arras et al., which incorporates machine learning to attain 

high-precision leg-tracking [8], and the work by Xavier et al., who developed fast techniques for leg 

detection from LRF data [9]. 

Our lab in particular has used an LRF-based human tracking system in several field trials, shown 

in Fig. 1, and we have built a substantial infrastructure on top of this system. We rely on pedestrian 

tracking to analyze the use of social spaces, to make predictions about human motion [10], to support 

robot localization [11], to locate specific individuals [12], and to plan robot trajectories to approach or 

avoid people [13]. 

 

Figure 1. Example of sensor network deployed in a shopping area. Sensor poles are placed 

unobtrusively against walls and columns around the space to provide ubiquitous tracking. 

 

It is thus of critical importance that the human tracking system provide consistently accurate data, 

for which proper calibration of sensor positions is essential. As our experiments have grown in size 

and number of sensors, the task of calibration has become more critical to data integrity and more 

difficult to perform by hand. In this paper we present a technique for calibrating sensor positions 

automatically, using pedestrian trajectories in the environment. Not only does this reduce the effort 

required for calibration, such as physically placing landmarks in the environment and manually 

aligning sensors, but it also achieves calibration non-invasively, i.e., without disturbing the social 

dynamics of the environment being observed. 

The techniques presented in this paper have been tested with our own system. Our configuration 

may differ from other tracking systems in various ways, such as the use of torso-height sensors as 

opposed to the more common leg-height sensors, but the solutions proposed in this paper should be 
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applicable to other tracking systems as well. 

2. SENSOR LOCALIZATION 

The estimation of sensor positions is a common task across many application fields, and there are 

several related techniques in existing literature. For example, Senior et al. developed a visual 

technique for automatic camera calibration [14]. Reference [15] provides a survey of available 

techniques for sensor localization. Regarding LRF position calibration, much existing work is related 

to robot localization and mapping.  

2.1. Requirements and constraints 

2.1.1. Basic requirements 

We are considering sensors in fixed positions, and it is assumed that a global scan map is not 

available. Due to the nature of laser range finders, it is not possible for the sensors to directly detect 

the relative locations of other sensors. The only available data is the current and historical range scan 

data from each sensor. Scan-matching is often used in robot localization techniques such as 

Monte-Carlo Localization [16] and Simultaneous Localization and Mapping (SLAM) [17], but it 

cannot be used for stationary sensors because ambiguities cannot be resolved by moving the sensors, a 

point discussed in more depth in [18]. 

The calibration procedure should also be non-invasive, enabling localization without interfering in 

the social environment being observed. Placing large objects in a busy shopping area, for example, 

could impede the flow of customers or deliveries, obstruct product displays, or disrupt the mood or 

atmosphere that the business is trying to cultivate. Using landmarks naturally found in the 

environment also makes it possible to recalibrate the system quickly at any time with minimal effort, 

e.g., if a sensor were moved while data collection was in progress. 

For these reasons, our proposed technique uses pedestrians moving through the environment as 

features for calibrating sensor positions. Similar work in multi-sensor localization using pedestrians as 

reference features has been performed with omnidirectional cameras [19], although these techniques 

cannot be directly applied due to fundamental differences in the nature of LRF and video data. 

2.1.2. Extensions from previous work 

In previous work, we proposed a method for automatic sensor calibration based on pedestrian 

observations, where observations were matched between sensors by comparing trajectory shapes [18]. 

We found that technique to be effective in environments where walking patterns vary significantly, 

such as within a room with several local destinations. However, when we tried to apply that technique 

in long corridors and large social spaces where people have distant goals, we found it to be 

ineffective. In these environments, the majority of trajectories locally approximate straight lines, 
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making it impossible to discriminate between them based on trajectory shape alone. Thus, one new 

requirement for our algorithm is to identify discriminatory features other than trajectory shape which 

will enable reliable matching of observations of the same people from disparate sensors. 

Furthermore, the large number of people observed simultaneously in these larger spaces required 

heavy computation. Our previous approach was brute-force, comparing every possible combination of 

trajectories between every pair of sensors. These computations become quite heavy for large spaces, 

as the number of comparisons necessary for s sensors with p pedestrian observations each grows as 

𝑝𝑠2. To extend our algorithm to be effective in large spaces with many sensors, a more efficient and 

scalable approach is necessary. The procedure of matching observations between sensors should be 

made as lightweight as possible, and minimal time should be spent evaluating unlikely matches. 

2.2. Proposed solution 

2.2.1. Patterns in pedestrian motion 

Considering these constraints, there are two problems to be solved: First, when most pedestrian 

trajectories are similar in geometry, we need some way to identify shared observations between 

sensors. Second, when the number of pedestrians is large, we need a way to reduce the search space to 

lower the computational load. To address these two points, we propose the use of emergent patterns in 

pedestrian motion as keypoints, rather than using the pedestrians themselves. 

Pedestrian motion through social spaces is quite rich, with a variety of observable features. While 

the simplest models treat the flow of pedestrians like a fluid, reacting to physical obstructions by 

flowing around them [20], more detailed models recognize not only physical forces, but social forces 

as well, which can be observed in crowd dynamics [21, 22]. Some features that could be observed in a 

flow could be physical, e.g. people slowing down to go through a bottleneck in a corridor; social, for 

example, people adjusting their paths to avoid an injured or elderly person moving slowly; or 

psychological, such as people slowing down to look at an interesting shop display. Any of these 

dynamic events can be observed not simply as independent behaviors of individuals, but as emergent 

patterns that arise in the pedestrian flow. When such patterns can be observed from multiple 

viewpoints, they become candidate features which can be used in calibration of sensor positions. 

2.2.2. Social groups 

Although many of these social flow features are highly localized or infrequent, one social feature 

that is commonly observed in many environments is the social group. These groups are formed when 

pedestrians with some social connection are walking together. Regardless of whether a group consists 

of a parent and child, a group of friends, a romantic couple, or a team of business colleagues, it can be 

recognized by the proximity between its members and the fact that members of a group regulate their 

speed in order to stay together, regardless of external forces on the pedestrian flow. Fig. 2 shows 
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examples of social groups observed by our tracking system. 

Social groups are easy to detect and quite common in many environments. Studies in crowd 

dynamics have revealed social groups to constitute up to 70% of pedestrian traffic [23]. Thus, we 

propose to use the social groups naturally formed by pedestrians as pose-invariant features for 

matching observations between sensors.  

Using social groups rather than individual trajectories as feature vectors for matching observations 

between sensors provides a number of benefits in terms of efficiency and robustness to noise. First, 

groups have more distinguishing features than individual trajectories, reducing the possibility of false 

matches. Second, social groups are stable over time, providing opportunities for filtering time-series 

data for better noise rejection. Finally, social groups are easily detectable based on instantaneous data 

within a single time-frame, a computationally simpler procedure than full trajectory matching.  

3. CALIBRATION ALGORITHM 

Our algorithm consists of a sequence of steps which are somewhat analogous to the 

Scale-Invariant Feature Transform (SIFT) [24] and a variety of other algorithms for computer vision 

which use rotation-invariant features to identify coordinate transformations. The sequence of steps is 

presented in Table 1, and each step will be explained in this section. 

 

 

Figure 2. Point cloud and simplified tracking data from two scenes showing social group detections. 
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Table 1. Steps in the proposed calibration algorithm. 

Step in Algorithm Description Output 

Extract human positions  

(Sec. 3.1) 

Using raw scan data and a background 

model from each sensor, identify 

pedestrian positions 

Sensor-relative pedestrian 

locations (typically noisy) 

Identify social groups  

(Sec. 3.2) 

Based on proximity and coherence of 

motion direction, identify social 

groups seen by each sensor 

List of groups for each sensor 

Compare groups between 

sensors 

(Sec. 3.3) 

Normalizing groups by motion 

direction, compare relative positions 

of members to identify potential 

matches 

List of matching groups for 

each sensor pair, and a sensor 

offset hypothesis for each 

matching group 

Generalized Hough 

transform 

(Sec. 3.4) 

Accumulate sensor offset hypotheses 

in bins, and select the bin with the 

highest score 

Approximate sensor offset 

hypothesis for each sensor pair 

RANSAC 

(outlier rejection) 

(Sec. 3.5) 

Perform RANSAC to reject false 

nearest-neighbor matches and 

calculate a refined offset hypothesis 

for each sensor pair.  

Pairs of shared pedestrian 

observations from entire 

observation history 

corresponding to the best-fit 

offset hypothesis 

Solution of network 

(Sec. 3.6) 

Build constraint matrix incorporating 

human observation pairs for all sensor 

pairs. Solve matrix using least-squares 

minimization. 

Location and orientation for 

each sensor in the network 

 

3.1. Identifying human detections 

3.1.1. Build a background scan for each sensor 

A background scan is built to model the fixed parts of the environment. Over several scans, a set of 

observed distances are collected for each scan angle, and the most frequently observed distances over 

time are used to build the background model. This technique allows us to filter out moving objects 

like people walking through the area. 
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3.1.2. Extract human positions from scan data 

Each data scan is then segmented to extract human positions. Since our system uses torso-level 

scanning, this is a relatively simple process. Fig. 3 shows examples of real scan data. 

A median filter is used to remove outliers and smooth the scan data. Continuous segments of 

foreground points more than 30 cm in width are then extracted. Discontinuities of more than 30 cm in 

depth are considered as segment boundaries. Possible occlusions are also considered. 

Small gaps are removed between segments of similar distance, and segments between 5 cm and 80 

cm in width are considered as human candidates. Using an elliptical shape model (major axis=55cm, 

minor axis=25cm), a body center estimate is determined as a function of visible body width. 

 

(a)  (b)  

Figure 3. (a) Scan data for two pedestrians in Cartesian coordinates. Gray represents the background 

model. (b) Polar representation of scan data a few seconds later, showing human detections. 

 

This step outputs a list of relative human positions, in the sensor’s local coordinate system. 

3.1.3.  Build trajectories 

Using nearest-neighbor matching to the detections from the previous time frame, the human 

detections are linked into trajectories. These are used for generating stable velocity estimates by 

time-series filtering, and to ensure observations of the same people at different times are not used to 

generate duplicate sensor offset hypotheses. 

3.2. Pose-invariant feature detection 

For keypoint features in computer vision to be robustly detectable despite noise and visual 

transformations, a descriptor vector is defined for each transformation-invariant feature, describing 

properties which can be used to estimate feature matches between frames. 

In our problem space, we propose social groups in the pedestrian flow as pose-invariant keypoint 

features. Social groups afford more rich feature descriptors than individual pedestrian trajectories, and 

they are stable over time, so noise rejection is possible by time-series filtering. 
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3.2.1.  Social groups as pose-invariant features 

To use social groups as pose-invariant features, we define a vector of measurable properties which 

will be consistent when viewed by sensors in different positions. This descriptor vector includes the 

number of members n of the group, the magnitude of its motion vector, ‖𝑣⃑‖ (note that 𝑣⃑ is defined 

in sensor-relative coordinates, so only its magnitude can be used as a pose-invariant property), and the 

geometric description of the group shape. 

The shape of the group can be described in a pose-invariant way as a list of the positions of its 

members. This information is stored as a collection of vectors 𝑀 = {𝑚⃑⃑⃑1, 𝑚⃑⃑⃑2, … 𝑚⃑⃑⃑𝑛} describing the 

position of each member in a coordinate system centered on the group’s geometric center and oriented 

with its x-axis in the group’s direction of motion. 

3.2.2. Detection of social groups 

A growing body of research is concerned with the study of social groups in pedestrian motion 

dynamics. In a study of 1020 pedestrian groups in an urban environment, Costa identified common 

group formations and studied their associations with gender and social factors [25]. Moussaïd et al. 

studied the shapes of approximately 1500 social groups and analyzed variations in average 

interpersonal distances [23]. 

Techniques for group detection are an active topic of research, e.g. [26]. In this study, we identify 

pedestrians with interpersonal distances below 1.5 m and a coherent direction of motion (within ±30 

degrees) as social groups. As our algorithm is robust to noise, this simple definition is sufficient even 

if it produces some false detections. 

 

Figure 4. Diagram of a group, showing subgroups and possible occlusions. (a) Sensors and 

pedestrians shown in absolute coordinates. (b) Sensor-relative observations of the group. 

(c) Subgroups enumerated, with the subgroup which matches between S1 and S2 highlighted. 

3.2.3. Enumerate sub-groups to guard against occlusion 

Some members of a group may be occluded by others. Thus, a group may appear to have three 

members to one sensor, but only two to another. To address this possibility, we enumerate all 
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sub-groups of an observed group to use as candidates for matching between sensors.  

Fig. 4 (a) illustrates a 3-person group observed by two sensors, S1 and S2, where one member is 

occluded from the perspective of S2, as shown in Fig. 4 (b). By enumerating the three possible 

subgroups, that is, one 3-person group and two 2-person groups, it is still possible to identify a match 

between the group observed by S2 and a subgroup of the group observed by S1, as in Fig. 4 (c). 

3.3. Hypothesis generation and feature matching 

3.3.1. Comparing groups 

As described above, a group descriptor consists of the number of members n, the magnitude of its 

motion vector ‖𝑣⃑‖, and a collection of member vectors M. To estimate the likelihood of a match 

between two groups, we first consider only groups of identical size, that is, where 𝑛1=𝑛2. Optionally, 

filtering can also be performed based on group speed, that is, where |‖𝑣⃑1‖ − ‖𝑣⃑2‖| < 𝑣𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 

Finally, to compare the member vectors, it is necessary to assign correspondences between the 

members of the two groups. A simple approach is to enumerate members counterclockwise around the 

group center, beginning from the x-axis, as in Fig. 5 (a). 

 

Figure 5. Matching member vectors between two groups. Each diagram shows a group of observed 

pedestrians with noisy position and direction, and the representation of that group normalized by 

group center and group direction. (a) unambiguous case. (b) ambiguous case where counterclockwise 

counting would not correctly compare the groups. 

 

However, in some groups, noisy readings for motion direction may cause the counterclockwise 

pairing strategy to fail, as illustrated in Fig. 5 (b). We can avoid this by using nearest-neighbor 

matching to identify the first member for the second group. Once one pair of members is associated, 

we can iterate through the remaining members without repeating the nearest-neighbor search. 

For two groups (G1,G2) being compared, define 𝑚𝑖
𝐺1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  as the 𝑖𝑡ℎ member of G1 and 𝑚𝑖

𝐺2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   as the 

corresponding member of G2. Once correspondences have been established, we compute 𝑑𝑖 =

‖𝑚𝑖
𝐺1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   − 𝑚𝑖

𝐺2⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ‖ for each pair. If all pairs satisfy 𝑑𝑖 < 𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 we consider groups G1 and G2 to 
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be a valid match. 

Fig. 6 shows an example of the two groups shown in Fig. 2 (bottom), from the perspective of two 

different sensors, “L” and “N.” Due to occlusions, two pedestrians are not visible to Sensor N. Table 2 

shows the group feature vectors visible to each sensor. The two-person “Group 3” seen by Sensor N 

can be matched with “Subgroup 2c” of the 3-person “Group 2” observed by Sensor L. 

 

       

(a) Sensor “L”          (b) Sensor “N” 

Figure 6. Point-cloud data for two group detections. Visible people are marked with a “*” and 

occluded people with a “?”. 

 

Table 2: Groups detected by two sensors in example. Corresponding groups are highlighted. 

 # Members ‖𝒗⃑⃑⃑‖ in mm/s 𝒎𝟏⃑⃑ ⃑⃑ ⃑⃑   (r,θ) 𝒎𝟐⃑⃑ ⃑⃑ ⃑⃑   (r,θ) 𝒎𝟑⃑⃑ ⃑⃑ ⃑⃑   (r,θ) 

Sensor L      

  Group 1 2 940 (341, 107˚) (341, 287˚)  

  Group 2 3 718 (674, 58˚) (276, 159˚) (677, 262˚) 

  Subgroup 2a 2 710 (388, 37˚) (388, 217˚)  

  Subgroup 2b 2 696 (393, 102˚) (393, 282˚)  

  Subgroup 2c 2 789 (661, 70˚) (661, 250˚)  

Sensor N      

  Group 3 2 768 (659, 72˚) (659,252˚)  

 

3.3.2. Generating a hypothesis 

For a given group observation 𝐺1𝑆1  observed by sensor S1, and a second observation 𝐺1𝑆2  of 

that same group, observed by sensor S2, we can define a hypothesis for the sensor offset in the form 

of a transformation matrix 𝐻𝐺1𝑆2
𝑆1 . The rotational offset 𝜃𝑆1

𝑆2 is equal to the difference of the motion 

directions 𝜃𝑆1
𝐺1 and 𝜃𝑆2

𝐺1, and the translational offset can be found as a difference of the group 

center points, ( 𝑥𝑆1
𝐺1, 𝑦𝑆1

𝐺1) and ( 𝑥𝑆2
𝐺1, 𝑦𝑆2

𝐺1).  
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3.4. Cluster identification by Hough Transform voting 

The next step is to use a Hough Transform to identify clusters of matches that vote for similar 

relative sensor offsets. To do this, we define a discrete accumulator grid in x, y, θ-space, and for each 

social group match that is identified, we add votes to the bin corresponding to the transformation 

hypothesis determined by that group. 

We can reduce the filter’s susceptibility to noise by weighting the number of votes for each 

hypothesis according to its likelihood of correctness. To estimate this likelihood, we define a 

consistency metric 𝐶(𝑥, 𝑦, 𝜃) based on the recorded history of observations from the two sensors. 

For each time slice in the recorded data, consider a set of 2-dimensional points 𝒑1
𝑆1  detected by 

sensor S1, a set of points 𝒑2
𝑆2  detected by sensor S2, and a proposed hypothesis for the 

transformation matrix 𝐻𝐺𝑛𝑆2
𝑆1  based on a shared observation of group 𝐺𝑛. Multiplying 𝐻𝐺𝑛𝑆2

𝑆1 𝒑2
𝑆2  

yields the set of points 𝒑2
𝑆1   in the coordinate system of sensor S1, so they can be directly 

compared with 𝒑1
𝑆1 , with which they should overlap if the hypothesis is correct. 

To find matching observation pairs, we filter by motion direction of the pedestrian, such that only 

observation pairs having motion directions within a threshold angle of each other, i.e. 

| 𝜃𝑝2
(𝑖)

− 𝜃𝑝1
(𝑗)𝑆1𝑆1 | >  𝜃𝑚𝑎𝑡𝑐ℎ, are considered as potential matches.  

For each remaining point in 𝒑2
𝑆1 , a nearest-neighbor search is performed among all points in 

𝒑1
𝑆1 . For computational efficiency, a k-d tree is used for this search, as suggested in [27]. The 

distance from a point 𝑝2
(𝑖)𝑆1  to its nearest neighbor 𝑝1

(𝑗)𝑆1 and second-nearest neighbor 𝑝1
(𝑘)𝑆1  are 

calculated. The nearest neighbor is considered a match if the Euclidean distance ratio is less than or 

equal to 0.8, that is, 
‖ 𝑝2

(𝑖)𝑆1 − 𝑝1
(𝑗)𝑆1 ‖

‖ 𝑝2
(𝑖)𝑆1 − 𝑝1

(𝑘)𝑆1 ‖
≤ 0.8. This is based on the technique used by Lowe for keypoint 

matching, which was reported to eliminate 90% of the false matches while discarding less than 5% of 

correct matches [24]. 

The consistency metric 𝐶(𝑥, 𝑦, 𝜃) is then defined as the total number of matches between 𝒑1
𝑆1  

and 𝒑2
𝑆1 , aside from the points contained in group Gn itself. For hypotheses that are far from the true 

offset between the sensors, C will be low or zero, and for hypotheses that are close to the true value, C 

will be high. For each hypothesis we add C votes to the accumulator bin. 

Finally, we output the hypothesis corresponding to the highest-scoring accumulator bin (or, if there 

is not one highest-scoring bin, by taking the union of the sets of pairs associated with all the top bins). 

Together with this hypothesis, we output the matching observation pairs discovered during the 

consistency check for that grid element. 

3.5. Pairwise model verification and outlier rejection 

Once enough data has been collected that at least one bin contains data from a threshold number of 
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distinct groups (we obtained good results by requiring 5), a sensor pair is considered to have a reliable 

hypothesis. Once every sensor has at least one reliable hypothesis linking it to the network, the 

RANSAC (random sample consensus) technique [28] is used to refine each hypothesis through outlier 

rejection. 

For each sensor pair, we use the best hypothesis and corresponding set of observation pairs 

obtained in the Hough transform step. As this hypothesis may be slightly incorrect, the set of 

observation pairs may contain false matches, as illustrated in Fig. 7. The objective of this step is to 

reject these false matches by further refining the sensor offset hypothesis and the set of corresponding 

observation pairs.  

 

Figure 7. Example of a false match between observations based on nearest-neighbor matching. 

 

The RANSAC technique is an iterative process in which a random subset of observation pairs is 

chosen, and a best-fit sensor offset hypothesis 𝐻’ is fitted to that data set. The remaining data points 

are classified as inliers or outliers based on whether they have nearest-neighbor matches assuming 𝐻’. 

A refined sensor offset hypothesis 𝐻’’ is recomputed using the set of inliers, and the Cartesian error ε 

is computed over all observation pairs marked as inliers using that hypothesis. After several iterations, 

the hypothesis 𝐻’’ that minimizes ε is accepted as the best model, and its associated set of inliers is 

stored for the next step in the algorithm. This process is repeated for all sensor pairs with at least some 

threshold number of shared observations. 

3.6. Simultaneous solution of network constraints 

The final step is to combine the refined set of inliers for each of the sensor pairs into a constraint 

matrix, which can be solved for the relative positions of all sensors in the network. To build the 

constraint matrix, we consider each sensor 𝑛, with absolute position (𝑥𝑛, 𝑦𝑛) and orientation 𝜃𝑛. To 

transform from the coordinate system of sensor n into global coordinates requires a rotation of −𝜃𝑛 

and translations of −𝑥𝑛 and −𝑦𝑛, represented by the homogeneous transformation matrix in Eq. 1. 

𝑻𝑛
0 = [

𝑐𝑜𝑠𝜃𝑛 𝑠𝑖𝑛𝜃𝑛 −𝑥𝑛

−𝑠𝑖𝑛𝜃𝑛 𝑐𝑜𝑠𝜃𝑛 −𝑦𝑛

0 0 1
] 

 

(1)  

The coordinates and orientations of all n sensors can be represented as a parameter vector  𝜷 =
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[𝑥1 𝑦1 𝜃1 𝑥2 𝑦2 𝜃2 … 𝑥𝑛 𝑦𝑛 𝜃𝑛]
𝑇 . Each human observation in sensor-relative 

coordinates, 𝑝𝑛 , can now be transformed to the global coordinate system: 𝑝 = 𝑻𝑛
0 𝑝𝑛0  

For each sensor pair, we consider pairs of corresponding shared observations { 𝑝1 , 𝑝2 } which 

should represent the same points in the global coordinate system. Hence, the error between them 

should be minimized:  

Given shared observations 𝑝1 = [
𝑝𝑥

1

𝑝𝑦
1

1

] , 𝑝 =2 [
𝑝𝑥

2

𝑝𝑦
2

1

] 

Minimize the error function 𝜀(𝜷) = ‖ 𝑻1
0 𝑝1 − 𝑻2

0 𝑝2 ‖ 

  

Next, we combine these constraints into a single constraint matrix.  

For one 6 × 1 shared observation vector  𝑝1,2 = [ 𝑝1 𝑇 𝑝2 𝑇] 

[ 𝑻1
0 − 𝑻2

0 ]𝑝1,2 = [
𝑝𝑥1

0 − 𝑝𝑥2
0

𝑝𝑦1
0 − 𝑝𝑦2

0

0

] 

For m points, ‖[
𝑻1

0 − 𝑻2
0 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑻1

0 − 𝑻2
0

] [𝑝1,2
1 𝑝1,2

2 … 𝑝1,2
𝑚 ]

𝑇
‖ = 𝜀1,2(𝜷) 

Define these elements as the 3𝑚 × 6 difference matrix:  

𝑫1,2 = [
𝑻1

0 − 𝑻2
0 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑻1

0 − 𝑻2
0

] 

And the shared 6 × 𝑛 observation matrix 𝒑1,2 = [𝑝1,2
1 𝑝1,2

2 … 𝑝1,2
𝑛 ]

𝑇
 

Now, combine observations from other sensor pairs: 

 

 ‖[

𝑫1,2  

 𝑫1,3
0

0
⋱  
 𝑫𝑛−1,𝑛

] [

𝒑1,2  
 𝒑1,3

0

0
⋱  
 𝒑𝑛−1,𝑛

]‖ = 𝜀(𝜷) 
 

(2)  

Then we use the Levenberg–Marquardt algorithm to find the optimal values of 𝜷 that minimize 

𝜀(𝜷) in Eq. 2 via least-squares minimization. 

4. EVALUATION 

To evaluate the performance of the algorithm, we measured calibration accuracy of sensor 

positions compared with ground truth in a controlled environment. We then measured tracking 

http://www.tandfonline.com/doi/abs/10.1080/01691864.2013.879272


This is an electronic version of an article published in Advanced Robotics [28] 9, pp. 573-588, 2014. 

Advanced Robotics is available online at www.tandfonline.com: DOI: 10.1080/01691864.2013.879272 

 

 

 

 - 14 -       Advanced Robotics (RSJ) 

 

accuracy attained by using the proposed technique in three public locations. Both analyses were 

performed offline, using recorded raw sensor data. 

4.1. Sensor Position Accuracy 

To provide a reference for ground truth, we set up four sensors in precisely-measured positions in 

a section of hallway in our laboratory, as shown in Fig. 8. 

 

 

Figure 8. Sensor placement for position accuracy measurement trials. 

 

The sensors were placed as close as possible to the nominal positions. To align sensor angles, a 

reference pole was placed at the origin, and sensors were manually rotated until the reference pole 

coincided with the center scan point detected by the laser range finders. Exact offsets of the sensors 

were then measured using a Bosch DLE 150 precision laser range measurement device, and sensor 

angles were fine-tuned in software to align the reference pole and wall detections. 

Five trials were conducted in which five people, members of our laboratory, walked through the 

corridor ten times each in groups of two and three. Data from each of the sensors was then replayed 

offline and calibrated using our system. 

The results, presented in Table 3, show an average displacement error of 34 mm and an average 

angular error of 0.51 degrees, averaged over the four sensors. We were quite satisfied with this result. 

However, these results do not directly answer the question of whether this level of accuracy is 

sufficient for precise tracking of pedestrians. 

4.2. Evaluation of Tracking Accuracy 

While accuracy of sensor position estimates is an important evaluation of our calibration 

technique, its ultimate purpose is to enable consistent estimates of pedestrian positions from multiple 

sensors. To evaluate the level of tracking accuracy made possible by our technique, we performed 

three tests of our system in public spaces.  

Table 3. Sensor Position Accuracy Results 

Trial Displacement Error (mm) Angular Error (degrees) 
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1 38 0.70 

2 26 0.86 

3 61 0.32 

4 20 0.26 

5 20 0.43 

Average 34 0.51 

For each location, we used separate data sets for calibration and evaluation. Absolute ground truth 

of the pedestrians’ positions was not available, so we based our consistency evaluation on the centroid 

of estimates from different sensors. Let 𝑝𝑠
(𝑖)

(𝑡) represent the estimated position of person i at time t, 

as observed by sensor s, with centroid 𝑝̂
(𝑖)

(𝑡) computed among all observations from different 

sensors. The number of sensors 𝑆
(𝑖)(𝑡) which can observe a person i at any given position depends 

on geometry and dynamic occlusions. We compute the average error 𝜀 from the centroid, in Eq. 3. 

𝜀
(𝑖)(𝑡) =

∑ ‖𝑝̂
(𝑖)(𝑡) − 𝑝𝑠

(𝑖)
(𝑡)‖𝑠

𝑆
(𝑖)(𝑡)

 
 

(3) 

A set of reference pedestrians was obtained by manually identifying corresponding trajectories 

from different sensors. 150 reference pedestrians were identified for each environment. For each 

reference pedestrian, we evaluated 𝜀
(𝑖)(𝑡) at each time step during which the pedestrian was 

simultaneously observed by at least two sensors.  

To visualize the consistency of tracking as a function of spatial location, we divided the space into 

a grid of 1m resolution. Each grid element was assigned the average of 𝜀
(𝑖)(𝑡) across all data points 

for which the centroid fell within that grid element, and the results are shown below for each 

environment. To obtain a final metric of accuracy, we computed the average error over all grid 

elements for each environment.  

For comparison, we have also included the accuracy results for our best-effort manual calibration 

based on visual inspection of scan data, which is typical of the calibration accuracy available to us 

before developing this technique. 

4.3. Results 

4.3.1. Straight corridor 

The first environment we analyzed (“Diamor”) was a corridor approximately 50m long and 7m 

wide in Diamor Osaka, an underground shopping area located between several train and subway 

stations in Osaka, shown in Fig. 9. This environment was geometrically simple, with a high degree of 

overlap between the coverage regions of 16 sensors lined up along a straight corridor. 27.6 pedestrians 

were detected entering this environment per minute. Figure 10 shows the calibration accuracy results, 

with an average error over all grid elements of 10.4 cm. 
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(a)  (b)  

Figure 9. (a) Map of the Diamor environment. (b) Photo of the Diamor environment. 

 

(a)  

(b)  

(c)   

Figure 10. Calibration results for the Diamor environment. (a) Trajectories used in the accuracy 

analysis. (b) Spatial error from manual calibration. (c) Spatial error from automatic calibration. 

4.3.2. Large space with multiple entrances  

The second environment (“ATC”) was a space over 60 m long and 25 m wide at its widest point, 

consisting of a hallway opening into large atrium at the Asia and Pacific Trade Center, a shopping and 

wholesale trade complex on the Osaka waterfront, shown in Fig. 11. An average of 31.8 pedestrians 

entered the environment per minute. The sensor network consisted of 19 sensors. Figure 12 shows the 

calibration accuracy results, with an average error over all grid elements of 8.3 cm. 
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Figure 11. (left) Map of the ATC environment. (right) Photo of atrium area. 

(a)  

(b)  

(c)   

Figure 12. Calibration results for the ATC environment. (a) Trajectories used in the accuracy analysis. 

(b) Spatial error from manual calibration. (c) Spatial error from automatic calibration. 

4.3.3. Subdivided space with many occlusions 

The third environment we analyzed (“Apita”) was a 15m by 10m space inside the entrance to the 

APiTA Town Keihanna Shopping Center, a shopping mall near our laboratory, shown in Fig. 13.  

This area was only observed by 8 sensors. 

Although this environment was physically smaller than the previous two environments, it was 

more difficult to calibrate, due to obstacles in the environment such as shopping carts, sliding doors, 

and clothing racks. There were also fewer pedestrians than the other two environments, with 22.7 

people entering the space each minute. Figure 14 shows the calibration accuracy results, with an 

average error over all grid elements of 7.9 cm. 
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(a) (b)  

Figure 13. (a) Map of the Apita environment. (b) Photo of the Apita environment. 

 

 

(a)   

(b)  (c)  

Figure 14. Calibration results for the Apita environment. (a) Trajectories used in the accuracy analysis. 

(b) Spatial error from manual calibration. (c) Spatial error from automatic calibration. 

4.4. Summary of results 

The graph in Fig. 15 shows the average calibration accuracy in each of the three environments. 

The proposed technique yielded results superior to the manual calibration estimates which had 

actually been used for each dataset, resulting in tracking accuracy within 11 cm in every case. 
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Figure 15. Overall calibration accuracy compared with manual calibration for each environment. 

4.5. Analysis of steps in the algorithm 

To illustrate the relative effectiveness of each of the steps in our algorithm, Fig. 16 shows the 

alignment of human positions detected by two sensors at one time frame, based on sensor offset 

hypotheses output by the Hough transform step, RANSAC step, and final calibration.  

(a) 

After Hough 

Transform 

 

(b) 

After 

RANSAC 

 

(c) 

After final 

calibration 

 

Figure 16. Alignment of simultaneous human detections by two sensors (a) based on Hough transform 

output, (b) based on RANSAC output, (c) based on final calibrated positions in a 16-sensor network. 

 

Recall that in our algorithm, each sensor offset hypothesis is used to generate a set of proposed 

matches between human observations, which are eventually used to generate the constraint matrix. 

The accuracy of final calibration strongly depends on the elimination of false matches in this matrix. 

To illustrate how each step in the algorithm reduces false matches, we computed confusion matrices 
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for three stages of the calibration process: group matching, the Hough transform, and RANSAC, 

based on a second set of ground truth trajectories of reference pedestrians, taken from the data set 

used to perform calibration. The results are shown in Table 4. As these results show, each step 

substantially reduces the number of false positives, contributing to the accuracy of the final 

calibration. 

Table 4. Percentage of correct human observation matches generated at each step of the algorithm, 

evaluated for each of the three environments. 

 Diamor ATC Apita 

Correct  Incorrect Correct Incorrect Correct Incorrect 

Group Matching 78.3 % 21.7 % 66.8 % 33.3 % 71.6 % 28.4 % 

Hough transform 97.0 % 3.0 % 94.3 % 5.7 % 91.9 % 8.1 % 

RANSAC 99.6 % 0.4 % 99.3 % 0.8 % 99.1 % 0.9 % 

5. DISCUSSION 

5.1. Areas of low pedestrian traffic 

This algorithm was designed for locations with high pedestrian traffic – one motivation for using 

social groups as keypoint features was to avoid the computational load required to compare many 

individual pedestrians. However, in low-traffic areas, computation would not be a significant problem, 

so it could make sense to use all individual trajectories as keypoint features. 

5.2. Multiple iterations 

The proposed procedure produces a sparse matrix of sensor-pair hypotheses which can be solved 

relatively quickly. A two-pass solution could also be considered, where the sensor-pair hypotheses 

estimated in the first pass are fed back into the RANSAC step of a second pass. This technique 

produces a dense matrix which should yield higher calibration accuracy, but which will take much 

more CPU time to solve. 

5.3. Pitch and roll 

This technique could be extended to take into account pitch and roll angles of the sensors, by 

modeling the world as vertically invariant and projecting scan points into a horizontal plane. Because 

our sensors are rigidly mounted on sturdy metal bases and used on level floors, such compensation 

was unnecessary in our work. It is likely that some error would be introduced by modeling pedestrians 

as vertically invariant. 

5.4. Sensor placement 

The key to fast and accurate calibration is generating a large number of shared observations, e.g. 
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when most space is covered by more than two sensors, such as in the Diamor environment. “Weak 

links” like the sliding doors separating the three left sensors from the rest in the Apita space make 

calibration difficult. If only one door existed, it is likely that the small room to the left would be 

internally consistent but globally misaligned, but the fact that two sliding doors exist helps to solve 

the problem by enabling loop closure. 

6. CONCLUSIONS 

This study has demonstrated a technique for calibrating the positions of laser range finders for a 

pedestrian-tracking system which can be used for studying crowd dynamics as well as assisting robots 

in navigational interactions with humans. This technique improves on a previously proposed 

pedestrian-based calibration technique by considering social groups, providing a smaller search space 

and more features for inter-sensor observation matching than using pedestrians alone. 

We have shown that this technique can calibrate large networks of up to 19 laser range finders, 

yielding an average tracking accuracy within 11 cm of error. These results validate the algorithm 

proposed in this paper and illustrate an example of how features of social pedestrian dynamics can be 

considered in a similar way to physical features in the environment. 
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