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Abstract Accurate robot localization and people tracking are 

necessary for deploying service robots in crowded everyday 

environments such as shopping malls, and features like product 

displays change over time, making map-based localization 

using on-board sensors difficult. We propose the use of an 

external sensor system to track people together with one or 

more robots. This approach is more robust to occlusions than 

on-board sensing and is unaffected by changing map features.  

In our system, laser range finders track people and robots in 

the environment, and odometry data is used to associate each 

robot with a tracked entity and correct the robot’s pose. 

Techniques are also presented for identifying and recovering 

from tracking errors. Simulation results show that our system 

can outperform localization using on-board sensors, both in 

tracking accuracy and in automatic recovery from errors.  

We demonstrate our system’s effectiveness in simulation, in 

a controlled experiment in a real shopping mall environment, 

and in real human-robot interactions with customers in a busy 

shopping arcade. 

 

Keywords Robot localization, Social robots, Sensor systems, 

Dynamic environments 

1    Introduction 

The domain of service robots operating within social 

environments is a growing field of interest in robotics. Many 

field studies have explored the use of robots in public or 

commercial spaces, including museums (Wolfram Burgard et 

al. 1998), hospitals (Mutlu and Forlizzi 2008), schools (Kanda 

et al. 2004a), and shopping centers (Kanda et al. 2010) , as 

shown in Fig. 1. In many such scenarios, dynamic navigation 

among pedestrians is necessary in order to provide services, to 

avoid obstructing people, and to ensure safety. 

 
Fig. 1  Robots provide route guidance and shop recommendations to 

customers in one of our field trials at a shopping arcade. 

1.1    Localization and human tracking for social robots 

For many social robotics applications, high positioning 

accuracy is a necessity (Glas et al. 2009a). If a robot is 

incorrectly localized while approaching or facing a customer, it 

is possible that the customer will not understand that the robot 

is trying to approach or address them. When giving directions 

or talking about products in a shop, a robot must point to places 

or objects to convey meaning. If the pose of the robot is not 

correctly estimated, the target of the pointing gesture could be 

completely misinterpreted. Research has also shown that the 

 

Dylan F. Glas (✉) 

ATR-IRC, 2-2-2 Hikaridai, Keihanna Science City, Kyoto, Japan 

Tel: +81-774-95-1405, Fax: +81-774-95-1408 

e-mail: dylan@atr.jp 

 

Yoichi Morales 

ATR-IRC, 2-2-2 Hikaridai, Keihanna Science City, Kyoto, Japan 

e-mail: yoichims@atr.jp 

 

Takayuki Kanda 

ATR-IRC, 2-2-2 Hikaridai, Keihanna Science City, Kyoto, Japan 

e-mail: kanda@atr.jp 

 

Hiroshi Ishiguro 

IRL, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, Japan 

e-mail: ishiguro@sys.es.osaka-u.ac.jp 

 

Norihiro Hagita 

ATR-IRC, 2-2-2 Hikaridai, Keihanna Science City, Kyoto, Japan 

e-mail: hagita@atr.jp 

http://dx.doi.org/10.1007/s10514-015-9426-3
mailto:dylan@atr.jp
mailto:yoichims@atr.jp
mailto:kanda@atr.jp
mailto:ishiguro@sys.es.osaka-u.ac.jp
mailto:hagita@atr.jp


Preprint manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10514-015-9426-3  2 

nuances of the robot’s motion planning are important for 

psychological reasons (Pacchierotti et al. 2006),(Sisbot et al. 

2005). For example, approaching a person from the wrong 

direction due to a localization error could make that person 

uncomfortable. 

For service robots in everyday environments, the need to 

track people robustly and accurately is also essential, both for 

navigation and for interaction. While on-board sensors can be 

used for tracking people at short range, it is possible to attain 

more robust, wide-area tracking by using external sensors 

embedded in the environment. For this purpose, laser range 

finders (LRFs) can provide high accuracy, and the advent of 

inexpensive RGBD sensors may reduce the cost of wide-area 

tracking substantially in the near future. 

Such wide-area coverage enables a number of techniques 

which are important for social robots. Socially-aware path 

planning for approaching people requires robots to have 

knowledge of people’s trajectories from 6 meters away or 

further (Satake et al. 2010). Human-factors considerations in 

motion planning require the robot to know the location of 

people before it is within line-of-sight, so it does not surprise 

them by appearing suddenly from behind objects (Sisbot et al. 

2005). Other techniques enable robots to anticipate people’s 

future behavior based on the observation of a large environment 

over time (Kanda et al. 2009). 

Thus, although such sensor systems require additional 

hardware and software infrastructure, they provide 

considerable value for social robotics applications and can be 

considered as a necessary framework in many cases. In this 

work, we make the assumption that an external sensor system 

for tracking people is available. 

1.2    Dynamic social environments 

For social robots to function in everyday environments, two 

main challenges to localization need to be overcome:  

First, in busy public spaces, the presence of large numbers of 

people presents a challenge for traditional map-based 

localization, as people crowded around the robots can occlude 

the fixed references that would be used for map-matching.  

Second, commercial environments also tend to contain many 

changing features such as movable furniture and product 

displays, which will degrade the accuracy of most localization 

approaches based on map-matching. Fig. 2 shows examples of 

such changing features from a shopping mall. A localization 

technique that is robust to such changing maps would be of 

great value in such environments. 

1.3    Proposed solution 

We assume that for social robot applications in public or 

commercial spaces, a high-precision tracking system such as 

the LRF-based system we use in our field trials will already be 

embedded in the environment for the purpose of tracking the 

motion of people. Given this assumption, we propose a robot 

localization solution which would take advantage of such an 

infrastructure, requiring no hardware beyond that already in 

place for tracking people. The use of sensors fixed in the 

environment for robot localization should provide a number of 

benefits. 

 First, as the sensors themselves are fixed reference points, 

they should enable more precise localization than that 

attainable by on-board sensing. 

Second, while any sensors, onboard or offboard, are 

susceptible to occlusions in crowded environments, the use of 

multiple sensors positioned around the environment should 

result in fewer occlusions than use of a single on-board sensor.  

Third, as this localization technique is not based on 

map-matching, it will provide consistent accuracy in 

environments with changing features. 

In this paper we describe our proposed system and evaluate 

its performance through simulations and field trials. We show 

that its accuracy is superior to that of a map-matching approach, 

particularly when the environment has changing features, and 

we demonstrate its real-world performance in a field trial at a 

busy shopping arcade. 

 

 

 

 
Fig. 2  Changing product displays. Photos on the left and right show how 
features in three areas of the shopping mall differ on different days. 

2    Related Work 

2.1    Map-based localization 

2.1.1   Online SLAM 

In the robot navigation community, much effort has been 

devoted to the problem of simultaneous localization and 

mapping (SLAM) using onboard sensors (Dissanayake et al. 

2001),(Ouellette and Hirasawa 2007). These techniques serve 

the dual purpose of map-building and robot localization. Some 

research additionally addresses the tracking of people in an 

environment, e.g. (Montemerlo et al. 2002),(Wolf and 

Sukhatme 2005),(Dirk Schulz et al. 2003). 

http://dx.doi.org/10.1007/s10514-015-9426-3
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Related research using road vehicles has focused on 

combining SLAM with the detection of moving objects in 

urban environments, such as (Wang et al. 2003) and (Vu et al. 

2007). 

Collaborative SLAM with multiple robots is also an active 

field of research (Billard et al. 1999), (W. Burgard et al. 2005), 

however, research in this field tends to focus on exploring 

optimal search techniques, for example, to minimize mapping 

time. In our case, exploration is not of interest, so such 

optimizations are unnecessary. 

2.1.2   Offline map-matching 

While SLAM is a major topic of research in robotics, the full 

process of building maps online is often unnecessary. For 

robots operating in relatively static, known environments, a 

map-matching approach based on a previously-constructed 

map, such as  Monte-Carlo Localization (Thrun et al. 2001), is 

sufficient, and it requires less computational overhead than 

solving the general SLAM problem.  

Localization based on previously-generated maps has been 

used quite often in scenarios such as Robocup (Köse and Akın 

2007),the DARPA Urban Challenge (Urmson et al. 2008), and 

for security robots (Takahashi 2007), expo guide robots 

(Siegwart et al. 2003), and shopping guide robots (Gross et al. 

2009).  

As map-based approaches rely on stability of the 

environment, they are usually not suitable for environments in 

which the features are expected to change frequently. However, 

some techniques have been proposed for handling such 

dynamic updates.  

For example, the technique presented in (Lee and Chung 

2010) uses recognizable features for localization and uses 

observations of unmodeled features to update its internal map. 

However, this is an offline technique, in which a map-updating 

process is conducted offline based on an interpolation of the 

robot’s path. At the time while it is moving through areas with 

unmodeled features, the robot has no information to help 

correct its localization. In addition, their technique requires at 

least 30% of the robot’s observations to correspond with the 

known map, whereas our proposed solution can work even 

when 100% of the features have changed.  

2.2    Localization using external infrastructure 

At the same time, other researchers are developing highly 

accurate and robust navigation and mapping techniques for 

robots in exploratory and military applications. Some of these 

techniques are based on external references such as GPS (Zhao 

et al. 2008) or fixed landmarks (Amarasinghe et al. 2008), and 

others are based on visual or RFID tagging of the robot or 

environment (Park et al. 2007), or integration with intelligent 

environments (Saffiotti et al. 2008). 

While these approaches can localize a robot with high 

accuracy, their typical drawback is that they require the 

installation of external infrastructure solely for the purpose of 

supporting localization.  

However, we already assume the existence of a sensor 

system embedded in the environment for human tracking, and 

this infrastructure can be used for localization with no 

additional cost. A variety of such tracking systems have been 

developed around the world (Fod et al. 2002; Bennewitz et al. 

2005; D. Schulz et al. 2003; Cui et al. 2007) 

Our approach to robot localization is to use such fixed 

external sensors rather than the on-board sensors of the robots. 

Our implementation uses laser range finders, but visual or 

RGBD cameras could also be used, without loss of generality. 

As many different tracking systems exist, one of our design 

goals is to preserve the abstraction barrier separating the 

implementation of the underlying people-tracking 

infrastructure from the robot localization technique. 

The work of Pizarro et al. (Pizarro et al. 2008) is similar to 

our approach, using a ring of cameras and an extended particle 

filter technique for robot localization. However, the technique 

presented in that work requires knowledge of the robot’s initial 

position. Our approach uses information which is independent 

of position and orientation to match between odometry and 

laser data, so it can be used with no knowledge of the robot’s 

initial position and is capable of recovering from the 

“kidnapping” problem.  

3    Tracking Infrastructure 

The algorithm to be presented in the paper does not depend 

on a particular tracking infrastructure, as long as some basic 

requirements are met.  

3.1    Minimum Requirements 

The minimum infrastructure required for our technique is a 

system which can anonymously report the (𝑥, 𝑦) positions of 

entities (humans or robots) in the environment.  

As our system is proposed for use with humanoid robots, we 

assume that the system cannot reliably distinguish between 

humans and robots by shape alone. This assumption stems from 

experiences with our field systems, where we have found that it 

can be quite difficult to differentiate between robots and 

humans based on range data alone because variations in 

reflectivity, clothing, and accessories such as backpacks and 

handbags produce a large variation in the shape profiles of 

people. 

3.2    Tracking systems used in this research 

We used two configurations of laser range finders in our 

studies. The number and type of sensors used differed between 

the configurations, but the tracking algorithm and processing of 

data were the same. In both cases, sensors were placed around 

the perimeter of the environment to minimize the likelihood of 

occlusions. 

3.2.1   Hardwired configuration 

Our first hardware configuration included six SICK 

http://dx.doi.org/10.1007/s10514-015-9426-3
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LMS-200 laser range finders with long-range sensitivity. They 

were usually set to a detection range of 80 m with precision of 

1cm, each scanning an angular area of 180° at a resolution of 

0.5°, providing readings every 26 ms. 

The LRF’s were mounted 85 cm from the ground, a height 

chosen so the sensors could see above clutter and obstacles 

such as benches and luggage. Another reason for this placement 

was that at long range, the scan beams are spaced quite far apart 

(over 8 cm apart at a range of 10 m) and detection of small 

features like legs is difficult. Detection of larger targets, like a 

torso, is more robust at these distances. 

As the sensors in this configuration have a high power draw, 

they were hardwired into the environment. The sensors were 

connected directly to power supplies and a central data 

acquisition PC, which then streamed all sensor data to the 

tracking server (a separate PC). 

3.2.2   Wireless configuration 

 The other configuration was a portable, wireless system 

using lighter-weight Hokuyo UTM-30LX Top-URG laser 

range finders with a nominal detection range of 30 m. Each 

sensor was mounted at the top of a pole at a height of 83 cm. For 

this configuration, the sensors were set to scan an angular area 

of 180° at a resolution of 0.25°, providing readings every 25 

ms. 

The data from each of these sensors was acquired using a 

portable Asus Eee PC 901 netbook mounted inside the base of 

the pole. Both the PC and the sensor were powered by batteries 

stored inside the base, with a maximum continuous data capture 

duration of about 10 hours.  

In this configuration, the capture PC’s streamed data to the 

tracking server (a separate PC) over a wireless LAN. 

3.2.3   Tracking Algorithm 

For the experiments in this paper, we used a tracking 

algorithm using individual particle filters to track multiple 

entities. Details of our detection and tracking algorithms are 

presented in (Glas et al. 2009b). To briefly summarize the 

tracking algorithm, foreground scan segments are identified for 

each sensor using background subtraction, and these segments 

are used to define a likelihood model for the locations of 

tracked entities. The likelihood models for all sensors are 

combined, and rules are established for creating individual 

particle filters for each new human (or robot) detection and 

deleting them when the entities are no longer being observed. 

The particle filters themselves model the entity’s position, 

orientation, and linear velocity (𝑥, 𝑦, 𝜃, 𝑣) , and the update 

model projects each particle by projecting its linear motion and 

adding normally-distributed noise in all four variables. 

A similar approach is taken in (Brščić et al. 2013), where 

head detections from several ceiling-mounted 3D depth sensors 

are combined to track people using individual particle filters. 

Although the results in this paper have been evaluated 

assuming an LRF setup, in practice we often use the same 

localization technique with both tracking systems. 

4    Proposed Technique 

The localization technique we propose here consists of two 

steps executed iteratively. In the first step, association is 

performed between the odometric trajectories of one or more 

robots and tracked trajectories of anonymous tracked entities 

based on similarity of their motion. Then in the second step, 

pose corrections are applied to the associated robots. 

In this work, the basic task of estimating track continuity is 

conducted by the tracking system. This is not a trivial problem, 

and we assume that any tracking system will make errors 

regarding track continuity, such as merging or splitting tracks 

incorrectly. As we will show later, by dynamically managing 

track associations, our proposed technique is able to recover 

quickly and function effectively despite errors which occur in 

the tracking system. 

4.1    Related techniques 

The fundamental problem to be addressed is the assignment 

of a known robot’s odometric track to a track observed by the 

environmental sensors, which shares some similarities with the 

general data association problem of multiple target tracking 

systems, e.g. for radar. The classical problem is typically 

addressed by techniques such as Multiple Hypothesis Tracking 

(MHT) and its variants (Reid 1979; Blackman 2004).  

However, there is a fundamental difference with the classical 

tracking problem. MHT systems are typically used for 

associating noisy observations in absolute spatial coordinates to 

previously-observed tracks in that same coordinate system. 

However, the problem we face is the association of extrinsic 

measurements from the tracking system with intrinsic 

measurements of odometry reported by the robot. 

As these observations are not in the same coordinate system, 

similarity between tracks cannot be directly measured, e.g. by 

Cartesian distance. A new technique is needed to enable track 

association between incompatible coordinate systems. 

4.2    Problem Formulation 

To associate odometric trajectories of the robots with tracked 

trajectories of entities detected by the tracking system, we 

examine the recent history of data from each source, 

represented in the form of a trajectory. We define a trajectory T 

to be comprised of a sequence of n points, 𝑇 = [𝑝1, 𝑝2, …  𝑝𝑛]
𝑇
. 

Each point 𝑝𝑖 = [𝑥𝑖 𝑦𝑖 𝑡𝑖]𝑇 , represents the entity's (𝑥, 𝑦) 

position at time 𝑡𝑖 . For tracked trajectories, we obtain 𝑝𝑖  

directly from the observed positions for these points, and for 

odometric trajectories, we generate 𝑝𝑖  by integrating the v and 

𝜔 values reported by the robot based on odometry. Note that 

tracking systems vary in their capabilities, so our algorithm 

does not assume that orientation is explicitly observable in data 

provided by the tracking system. 

Let 𝑁𝑅 be the number of robots to be tracked, and let 𝑁𝑇 be 

the number of trajectories observed, where 𝑁𝑇 ≥ 𝑁𝑅. We are 

http://dx.doi.org/10.1007/s10514-015-9426-3
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given a list of robot trajectories 𝑅𝑖  | 𝑖 ∈ (1…𝑁𝑅), computed 

from odometry and defined in robot-relative coordinates, and a 

list of observed trajectories 𝑇𝑗  | 𝑗 ∈ (1…𝑁𝑇), defined in the 

global coordinate frame of the sensor system. We wish to 

identify a unique mapping from each robot’s odometric 

trajectory 𝑅𝑖   to one observed trajectory 𝑇𝑗. 

4.3    Evaluating Trajectory Similarity 

To estimate the likelihoods of correspondences between a 

robot’s odometric trajectory and observed trajectories, we 

define a similarity function to compare trajectory shapes. 

4.3.1   Data preprocessing 

We assume the trajectories are recorded in the system at 

regular time intervals (we chose 200 ms). If this is not the case, 

recorded trajectories can be resampled to regular time intervals. 

Humans can be detected at any time, so we compare only the 

overlapping time range 𝑡𝑣𝑎𝑙𝑖𝑑  during which the trajectories 

being compared, 𝑅𝑖 and 𝑇𝑗, both contain valid data. 

If 𝑡𝑣𝑎𝑙𝑖𝑑  is too short, there is not enough shape information to 

distinguish trajectories, so comparisons are only performed if 

𝑡𝑣𝑎𝑙𝑖𝑑  is at least 𝑡𝑚𝑖𝑛  seconds long (we used 5 s), and the 

overlapping data is truncated after 𝑡𝑚𝑎𝑥 seconds (we used 15 s) 

to simplify computations.  

4.3.2   Measuring trajectory similarity 

To compare the motion reported by the robot with the motion 

observed by the sensors, we define a metric quantifying 

spatiotemporal similarity between trajectories. Only 

pose-invariant features are candidates, as they must be 

comparable between the sensor and robot coordinate frames. 

Candidates for such metrics include velocity, acceleration, 

trajectory curvature, or other features. We chose to use the 

geometric similarity between the trajectory shapes, because the 

geometry implicitly incorporates all of the above features. 

To compare the shapes of two trajectories with known 

correspondences (based on time of detection), we must 

determine the optimal rigid 2D transformation to minimize the 

error between them. We thus compute the homogeneous 

transformation matrix 𝑨  which minimizes 𝜀 , the squared 

Euclidean error between corresponding trajectory points: 

𝜀 = ‖𝑨�⃗� 𝑖 − �⃗� 𝑗‖
𝟐
. 

 We define 𝑨 as a function of parameter vector 𝛽 as follows: 

𝛽 = [

𝑥
𝑦
𝜃
]   𝑨(𝛽) = [

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 𝑥
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑦
0 0 1

] 

 The optimal values of 𝛽  which minimize  𝜀  are then 

computed. The least-squares solution can be obtained through 

common iterative techniques such as the Levenberg-Marquardt 

algorithm, or through singular-value decomposition using the 

Kabsch algorithm (Bevilacqua et al. 2006).  

The minimum value of 𝜀  can then be used as a metric 

characterizing the difference between the trajectory shapes. 

Since the number of points being compared can vary depending 

on the length of 𝑡𝑣𝑎𝑙𝑖𝑑 , the error is normalized by the number of 

points compared, such that the final metric used is 𝜀̂ = 𝜀 𝑛⁄ . 

Figure 3 illustrates the trajectory comparison process. 
  

4.4    Track Association 

Once the similarity metric 𝜀̂  can be obtained for each 

trajectory pair, the next step is to make decisions about track 

assignments. For this step, two principal requirements must be 

considered. 

4.4.1   Requirements 

a) Reliably identify matching tracks 

Robots will often have similar trajectories to each other –

robots that interact with people might stop for long periods of 

time to have conversations, and even moving robots may be 

indistinguishable from each other based on trajectory shape, 

e.g. if they are the same build of robot with a fixed maximum 

speed, and they are moving in straight lines. 

Figure 4 shows an illustration of this phenomenon. Robots 

are distinguishable from each other only at certain times, so it is 

risky to make new track assignments during the time periods 

shaded in gray in the figure. 

 For this reason, the policy of our approach is to create 

robot-track assignments at times when correspondences can be 

identified with high confidence, and then to maintain those 

assignments as long as the correspondences remain valid. 

 
Fig. 3  Trajectory shape comparison. Trajectories T1 and T2 are observed 

by the sensor system and compared with an odometric trajectory from the 

robot. A 2D rigid transformation is applied to obtain the best fit between 

observations which correspond in time, and the squared error, 𝜀, is computed 

for each possible match. 

http://dx.doi.org/10.1007/s10514-015-9426-3
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Fig. 4  During some periods of time, robot trajectories will be 
indistinguishable from each other, such as when robots are stopped or driving in 

a straight line at their maximum speed (gray areas in the figure). Assignments 

can only be made at times when robot motion is unique. Note that although for 
simplicity this graph only shows instantaneous speed, the trajectory match is 

actually performed using a Cartesian match of trajectory shapes. 

b) Recover quickly from track continuity errors  

Stable tracking is a challenging task, and we assume the 

tracking system will occasionally encounter tracking errors. 

For example, two entities moving near each other could be 

mistaken for each other and their ID’s could become switched. 

In these cases, the track association of the robot must be 

updated as quickly as possible to the correct tracked entity. For 

this reason, our policy is to disassociate a robot as soon as 

possible if there is any evidence that it may not be correctly 

assigned. At every time step, we evaluate three metrics to 

identify incorrect associations: a robot is disassociated if track 

similarity ε̂ goes below a threshold, if its instantaneous speed v 

differs from its tracked entity by more than a threshold, or if its 

projected Cartesian position differs from that of its tracked 

entity by more than a threshold distance. 

4.4.2   Assignment Algorithm 

a) State Representation 

To satisfy these two requirements, we use a state model to 

represent a robot’s association status. Once a robot is correctly 

associated with a tracked entity with high confidence, that 

assignment will be maintained until there is evidence that the 

association is no longer correct. In this way associations remain 

stable even during times when they cannot be distinguished by 

trajectory shape. We reflect this information by assigning each 

robot an association state 𝕊𝑅𝑖
(𝑡) which can either associated or 

unassociated, as shown in Fig. 5. 

At each update of the algorithm, the existing assignments of 

all associated robots are evaluated to determine whether they 

are still valid. The trajectories of all unassociated robots are 

then compared with those of the tracked entities, and new 

associations are created if possible. The complete procedure for 

the association algorithm is presented in Table 1. 

b) Disassociation 

At each cycle of the association algorithm, the first step is to 

identify any incorrect associations and disassociate them. 

Incorrect associations can occur due to track continuity errors 

from the tracking system or incorrect mappings from the 

association algorithm.  

The algorithm will transition a robot from associated to 

unassociated if there is any negative evidence for its current 

association, specifically if any of the following three conditions 

are satisfied: 

 The tracked entity to which the robot is associated is no 

longer detected 

 The robot’s motion is too inconsistent with the motion 

of the tracked entity  

 This robot’s associated entity is the best-match entity 

for a different, unassociated robot 

After applying these rules for disassociation, the algorithm 

proceeds to associate unassociated robots when possible.  

c) Association 

We next evaluate which robots should be transitioned from 

unassociated to associated. A cost matrix ℳis computed by 

evaluating 𝜀̂  for every trajectory pair candidate (𝑅𝑖 , 𝑇𝑗) 

considering all unassociated robots and all tracked entities.  

A global nearest neighbor matching is then performed to 

dynamically assign association mappings to whichever set of 

robot-trajectory mappings minimizes the sum of 𝜀̂. This is the 

classic 2D assignment problem, which can be solved using 

techniques such as the Simplex method or the Hungarian 

method (Kuhn-Munkres algorithm). Note that although strictly 

speaking, the Hungarian algorithm is used to assign n jobs to n 

workers, variants exist which can assign n jobs to m workers, 

where 𝑚 >  𝑛. We used Kevin L. Stern’s implementation1 for 

assignment, although many similar implementations exist. 

If the optimal association map assigns a new robot to a 

tracked entity previously assigned to a different robot, both 

robots are disassociated and the process is repeated to find the 

best set of assignments. 

4.4.3   Threshold value determination 

Several threshold values are used in this algorithm, and we 

have not developed a formal method for determining these 

values. Several factors affect the tuning of the parameters. 

Quality of data from the tracking system can vary based on 

geometry of the sensors, complexity and crowding of the 

environment, and reflectivity of the robot(s) and other objects. 

 
1  

http://software-and-algorithms.blogspot.jp/2012/09/the-hungarian-algorithm-f

or-assignment.html 

 
Fig. 5  State transition model for robot-entity associations. 

http://dx.doi.org/10.1007/s10514-015-9426-3
http://software-and-algorithms.blogspot.jp/2012/09/the-hungarian-algorithm-for-assignment.html
http://software-and-algorithms.blogspot.jp/2012/09/the-hungarian-algorithm-for-assignment.html
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In cases where tracking is less reliable, e.g. the entity associated 

to the robot disappears frequently, factors such as 𝑡𝑚𝑖𝑛 , 

dist_threshold, and speed_threshold can be reduced, yielding 

jumpier tracking but lowering the risk that tracking glitches will 

cause long-lasting misassociations.  

Odometry error can also vary based on the environment, e.g. 

smooth floors vs carpeted areas. If there is a great deal of wheel 

slip and odometry is less reliable, it could be useful to increase 

error_threshold in order to allow association based on looser 

matches between odometric and tracked trajectories. 

4.4.4   Computational load 

We measured the amount of time required to execute the 

trajectory pair comparisons and association algorithm, 

executed in Java on an Intel i7 processor. 

For this comparison, we generated random trajectories 

corresponding to the robots and pedestrians, using 25 data 

points for each trajectory and adding random noise to each 

point for the sensor data. For various settings of number of 

robots, number of humans, and number of currently-associated 

robots, we averaged the computation time of the association 

algorithm across 10 trials using different trajectories. 

The computational load is strongly dependent upon the 

number of robots which are currently associated – for h 

humans, a associated robots, and u unassociated robots, the 

number of trajectory comparisons for the associated robots is 

only a, since it is only necessary to confirm that their tracks are 

still valid. For the unassociated robots, each robot must be 

compared with the tracks from all humans and all robots, or 

𝑢(ℎ + 𝑢 + 𝑎)  comparisons. Thus, as more robots become 

successfully associated, the computational load decreases 

significantly. 

In our simulation, we considered three scenarios. The first 

was a typical case from one of our field deployments, with four 

robots deployed in a space along with an average of 40 people. 

We also simulated heavier loads of 10 robots with 100 people 

and 20 robots with 200 people. For reference, the largest 

deployment of our tracking system has tracked a maximum of 

about 200 people at once. 

Results of our benchmark test are shown in Fig. 6. For all 

cases, the maximum computation time required for full 

association of all robots was well within our chosen update 

interval of 200 ms. For the case where 𝑢 = 4, ℎ = 40, the total 

time was just over 7 ms.  

Closer inspection shows that most of the computation time 

was used by trajectory comparison. Assignment determination 

by the Hungarian Algorithm required an average of 0.04 ms for 

the 4-robot scenario, 0.18 ms for the 10-robot scenario, and 

0.68 ms for the 20-robot scenario, and was mostly independent 

of the number of robots to be associated. 

In practice, the majority of the robots will usually be 

associated most of the time – in both the simulation and field 

studies presented later in this paper, we will see that the robots 

were associated over 99% of the time. Thus, we can expect that 

even for large teams of robots, computation time will typically 
stay towards the low end of each graph. In practice, our 

localization server usually runs on the same PC as other 

 Table 1. Association update algorithm 

ALGORITHM update-associations 

INPUTS: 𝑅𝑖 | 𝑖 ∈ (1…𝑁𝑅), 𝑇𝑗  | 𝑗 ∈ (1…𝑁𝑇) 

∀ 𝑅𝑖, update 𝐱𝑅𝑖 , �̇�𝑅𝑖  of 𝑅𝑖 from odometry 

∀ 𝑇𝑗, update 𝐱𝑇𝑗, �̇�𝑇𝑗 of  𝑇𝑗 from tracking system 

 

for 𝑖 ∶ 1~𝑁𝑅     % Disassociate invalid matches 

     if 𝕊𝑅𝑖
== associated 

          Compute 𝜀̂ for [𝑅𝑖, 𝑇𝑗] 

          Compare position and velocity of 𝑅𝑖  with associated  

𝑇𝑗. 

          if ( 𝜀̂ > error_threshold 

               OR ‖𝐱𝑅𝑖 − 𝐱𝑇𝑗‖ > dist_threshold 

               OR ‖�̇�𝑅𝑖 − �̇�𝑇𝑗‖  > speed_threshold ) 

               𝕊𝑅𝑖
:= unassociated 

          end if 

     end if 

end for 

 

for 𝑖 ∶ 1~𝑁𝑅     % Compute cost matrix ℳ 

     if 𝕊𝑅𝑖
== unassociated 

          for 𝑗 ∶ 1~𝑁𝑇  

               Compute 𝜀̂ for [𝑅𝑖 , 𝑇𝑗] 

               if 𝜀̂ ≤ error_threshold 

                    ℳ(𝑖, 𝑗) ∶= 𝜀̂ 
               end if 

          end for 

     end if 

end for 

 

LABEL 1:     % Create associations 

for (𝑅𝑖, 𝑇𝑗) ∋ ℳ(𝑖, 𝑗) is defined 

     Compute assignment map 𝔸, e.g. via Hungarian Algorithm 

end for 

while ∃ entity 𝑇𝑗 associated to more than one robot 

     for 𝑅𝑖 ∋ 𝑅𝑖  𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑡𝑜 𝑇𝑗 

          if 𝕊𝑅𝑖
== associated 

               𝕊𝑅𝑖
:= unassociated 

               Compute 𝜀̂ for [𝑅𝑖 , 𝑇𝑗] 

               if 𝜀̂ ≤ error_threshold 

                    ℳ(𝑖, 𝑗) ∶= 𝜀̂ 
               end if 

          end if 

     end for 

     Go to LABEL 1 

end while 

for (𝑅𝑖, 𝑇𝑗) in 𝔸 

     Assign 𝑅𝑖 → 𝑇𝑗  

     𝕊𝑅𝑖
:= associated 

end for 
 

http://dx.doi.org/10.1007/s10514-015-9426-3
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software such as the tracking system, and the extra 

computational load due to the localization system is quite 

small. 

4.5    Applying Robot Pose Corrections 

Once associations have been determined, position and 

heading corrections must be applied to all robots which have 

been successfully associated to tracked entities.  

As our sensor network can perform tracking with very high 

precision (a mean error of 4.6 cm was reported in (Glas et al. 

2009b), although the accuracy varies based on geometry of the 

sensor configuration), we chose to directly apply the 

detected  (𝑥, 𝑦)  positions to the robots, rather than using an 

estimation filter incorporating an odometry model. Since 

orientation is not observable from the tracking system, 

correction of the robot’s heading is computed separately using a 

1-dimensional Kalman filter. 

4.5.1   Position correction 

For each robot, the position data from the laser tracking 

system is used to update the robot’s (𝑥, 𝑦) position. 

If the robot is moving, we set its position directly to the latest 

observed position of its associated entity. In the case that a 

robot is stopped, which can be accurately determined using 

wheel encoders, we can obtain a more stable position estimate 

by averaging its position estimates over time. If odometry 

indicates that a robot is stopped, we add the latest observed 

position to a window filter for averaging. 

4.5.2   Heading correction 

Although the (𝑥, 𝑦) position estimates sent to the robots have 

some error, that error will be no larger than that of the tracking 

system itself. Heading errors are more critical, however, as they 

will more strongly cause odometric position estimates to 

diverge from the robot’s true position over time. A mechanism 

is thus needed to correct orientation errors. 

Stated more precisely, the purpose of this step is to correct 

the angular error between the robot’s on-board estimate of the 

world coordinate system and the actual world coordinate 

system. For a differential-drive robot, this can be seen as 

correcting the robot’s heading.  For an omnidirectional robot, 

this can be interpreted as aligning its estimated direction of 

motion with its externally-observed direction of motion.  

As noted earlier, we do not assume that the tracking system 

can directly observe the robot’s orientation, so we use a 

one-dimensional Kalman filter to estimate this variable based 

on observed displacements. 

Kalman filtering is a classic state-estimation technique, in 

which both an estimate of the state of a system and a measure of 

the accuracy of that estimate are calculated recursively at every 

time step. There are several forms of the equations for the 

Kalman filter, and Equations 1-3 show the form which most 

clearly illustrates our approach. 
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Our aim is to recursively approximate the actual motion 

direction 𝜃𝑘  at time step 𝑘 with an estimate �̂�𝑘 , given angle 

observation 𝑧𝑘  with measurement variance 𝜎𝑧𝑘
2  and previous 

motion direction estimate 𝜃𝑘
−.   

The variance 𝜎𝜃𝑘
−

2  of the motion direction estimate is updated 

at each step, and it is assumed that this increases over time due 

to a process noise with variance 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠
2 . The term 𝐾𝑘 in Eq. 1 

represents the Kalman gain, which is used in calculating the 

new angle estimate (Eq. 2) and its variance (Eq. 3). As each 

new observation is recorded, these three equations are 

evaluated recursively, using the previous step’s state estimate 

and variance. 

The state being estimated in this case is the robot’s direction 

of motion, based on comparing the robot’s estimate of its 

motion from odometry with observations of the robot’s 

direction of motion from the tracking system, as illustrated in 

Fig. 7. 

The Kalman filter alternates between two phases: a 

prediction phase and an update phase.  

 
Fig. 7  Dynamic model showing estimated pose, observed pose, and 
covariance of measurement error. 

 
Fig. 6  Computation time for the association algorithm.  

http://dx.doi.org/10.1007/s10514-015-9426-3
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Prediction phase: Beginning with the robot’s previous 

position (𝑥𝑘−1
𝑂𝑑𝑜 , 𝑦𝑘−1

𝑂𝑑𝑜)  (which has already been corrected to 

coincide with the observed position from the previous time 

step), we project the robot’s position based on the odometric 

translation and rotation reported by the robot to obtain a new 

position (𝑥𝑘
𝑂𝑑𝑜 , 𝑦𝑘

𝑂𝑑𝑜). The predicted angle 𝜃𝑘
− is calculated as 

follows: 

𝜃𝑘
− = tan−1 (

𝑦𝑘
𝑂𝑑𝑜−𝑦𝑘−1

𝑂𝑑𝑜

𝑥𝑘
𝑂𝑑𝑜−𝑥𝑘−1

𝑂𝑑𝑜) 

We assume that this motion is corrupted with a small process 

noise 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠
2  at each step (we used an arbitrary small value of 

0.0001 radian). 

Update phase: An observed value for the robot’s motion 

direction is then obtained from the position data from the 

tracking system. The angle observation 𝑧𝑘  is obtained by 

comparing the position of the tracked entity’s position from the 

sensor network (SN) at step 𝑘 with its previous position at step 

𝑘 − 1 as follows: 

𝑧𝑘 = tan−1 (
𝑦𝑘

𝑆𝑁 − 𝑦𝑘−1
𝑆𝑁

𝑥𝑘
𝑆𝑁 − 𝑥𝑘−1

𝑆𝑁 ) 

The position observation is noisy, with a measurement 

uncertainty 𝜎𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
2 . Using a small-angle approximation, we 

can say that for displacement dS, the variance of the angle error  

𝜎𝑧𝑘
2 ≈ 𝜎𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

2 /𝑑𝑆. 

What this means is that the angle estimate from the tracking 

system becomes more reliable (lower variance) when the robot 

has traveled further (higher dS), which makes intuitive sense.  

Each time a new position estimate is available from the laser 

tracking system, these two steps are repeated and the difference 

between the angle estimate �̂�𝑘 and the robot’s perceived angle 

is calculated and sent to the robot. 

4.6    Synchronization 

Since the tracking infrastructure is connected with the robot 

over a wireless network, network delay can sometimes be a 

problem. We have developed a few techniques to minimize the 

impact of network delay. 

First, communication between the robot and the localization 

server is asynchronous. The robot continues to send updates of 

its position whether or not it receives any corrections in return. 

If packets from the robot are delayed, the server will usually 

receive a burst of several delayed readings.  It can then perform 

its calculations using the most recent update rather than using 

old data. 

Second, the corrections to the robot’s orientation are sent as 

the angular difference between the robot’s reported orientation 

and its estimated orientation, rather than sending the absolute 

angle. If the robot receives an absolute angle correction with 

some delay, when it has already rotated to a different angle, the 

resulting pose can be off by a significant amount, and this error 

will affect all future pose estimates. By sending the angular 

difference rather than the absolute angle, we avoid this 

problem, as the robot can simply apply the correction to 

whatever its current pose is. 

Of course, application of delayed (𝑥, 𝑦) position data can 

cause an error if the robot is moving quickly, but the offset is 

just a small constant value, and the long-term consequences are 

not nearly as serious as they are with heading corrections. 

Finally, we often use this system in conjunction with a 

teleoperation system, by which robot positions can be manually 

reset remotely. 

Care must be taken that manual position corrections to the 

robot are not immediately overwritten by data from the 

localization server, which is based on the previously reported 

position. The nature of asynchronous updates can sometimes 

result in the robot’s perceived position jumping between the 

new and old position, as old and new data cycles between the 

robot and the localization server. 

To address this problem, whenever the robot’s position is set 

to a new location by an external source, a “reset” signal is sent 

from the robot through the localization system, and back to the 

robot. Until the signal returns, the robot does not respond to any 

position corrections. 

5    Comparison with Map-Matching in Simulation 

To evaluate the effectiveness of the proposed technique, we 

performed simulated trials comparing the proposed method 

with localization by map-matching, which we consider to be an 

approach which would typically be used for robot localization 

in public spaces, e.g. (Thrun et al. 1998). 

5.1    Performance Comparison 

The simulations were performed using the Player/Stage 

system (Gerkey et al. 2003). We simulated a robot driving 

through a virtual environment containing 10 simulated 

pedestrians, and we recorded odometry data for the robot as 

well as range data from the robot’s on-board LRF and 12 LRF’s 

fixed in the environment. 

For each trial, two trajectories were recorded for the robot. 

First, the robot was manually driven once around the 

environment to gather data for building a scan map. Next, the 

robot autonomously wandered around the environment 

avoiding obstacles for 20 minutes to generate data for 

performance evaluation. In total, 10 trials were conducted with 

the simulation, each starting from a different location in the 

virtual world. Every trial included a 1-2 minute mapping run 

and a 20-minute evaluation run. 

To evaluate our proposed technique, we played back the 

odometry and laser data logged from the evaluation runs, 

processing data from the environmental LRF’s and the robot’s 

odometry with the same tracking server developed for use with 

our robots in the field. The resulting corrections were applied to 

the simulated robot, and the robot’s corrected positions were 

recorded for comparison with ground truth from the simulation. 

To evaluate the performance of a map-matching approach, 

we built a scan map based on the mapping run for each trial, 

then used the robot’s odometry and LRF data from the 

evaluation run as inputs to a simulated robot that localized itself 

using a map-matching technique. These results were also 

recorded for comparison with ground truth. 

http://dx.doi.org/10.1007/s10514-015-9426-3
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5.1.1   Simulation settings 

For the simulation, we used Player 3.1.0 and Stage 3.2.1 

running on an Ubuntu Linux system. The world used in these 

simulations was the “cave” world included with the Stage 

distribution. One robot and 12 sensors were simulated in this 

world, as depicted in Fig. 8, and an example trajectory from one 

of the trials is shown in Fig. 9. Sensors were arranged in an 

attempt to provide coverage by at least two sensors over most of 

the open area of the world. Their positions were fixed and not 

moved between simulations. 

The robot was modeled as a MobileRobots Pioneer 2-DX 

differential-drive robot, and both the robot’s on-board sensor 

and the environmental sensors were modeled as SICK 

LMS-200 laser range finders. 

To simulate real sensor data, noise was added to both laser 

and odometry data, with a standard deviation of 0.05 m for laser 

data and 0.03 m/s for the left and right wheel speeds, which are 

the default noise values provided for the Pioneer 2-DX model 

in the Stage simulator. 

The pedestrians were also simulated using the Pioneer 2-DX 

model, as its width of 0.5 m is comparable to that of a person. 

Both the pedestrians and the robot were configured to move 

according to the same “wander” model, at a speed of 0.4 m/s. 

Although human movement in many real environments would 

be faster than a robot and exhibit different dynamics, we chose 

to use the same motion behaviors for the humans and robot in 

order to provide the most challenging test of our system’s 

ability to identify the robot among many similar trajectories. 

5.1.2   Evaluation 

To measure the performance of our proposed technique, we 

ran our localization and tracking systems using the robot 

odometry and environmental LRF data logged from the 

simulation, and position corrections were sent to a simulated 

robot and logged. 

 For the map-matching comparison, we aimed to use 

commonly available tools and techniques to evaluate the 

performance of a “typical” map-based localization technique. 

The 3DTK package available on the openSLAM.org website 

(3DTK) was used as a representative example of software that 

is commonly used for map generation. 

For each trial, we generated a grid map offline using scan 

data and odometry data from the mapping run of the simulated 

robot. To generate localization estimates, we then replayed 

laser scan data and odometry data from the evaluation run 

offline, and we used a particle filter to estimate the robot’s 

position using a ray-tracing approach to estimate particle 

likelihood. Specific details of our map-building and 

localization techniques are presented in the Appendix. 

In both cases, the resulting robot positions were compared 

with ground truth to determine absolute localization error at 

each time step. 

5.2    Results and Discussion 

The total data set consisted of 82870 data points, 

representing 10 trials lasting 20 minutes each. We performed 

two analyses of the data: one comparing the overall error 

 
Fig. 8  Screenshot of stage simulation, including robot (blue, in lower left), 

10 humans (red, placed around the environment) and 12 sensors (yellow, 
placed against walls). The shaded areas represent simulated laser scan data 

from the sensors and robot. 

 
Fig. 9  Example of a 20-minute robot “wandering” trajectory used for 
evaluation, shown on a map of walls and sensors.  Humans were continually 

moving and so are not shown in this diagram. 
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observed between conditions, and a second analysis 

considering the effects of large errors due to tracking failures. 

These results are shown in Fig. 9 and in Table 2. 

5.2.1   Localization Error 

We compared the mean error for each of the ten trials 

between the two conditions: proposed-technique and 

map-matching. In our analysis, we first checked whether the 

data followed a normal distribution, using the Shapiro-Wilk 

test. Analysis for data from each condition showed significance 

(p=.028 for proposed-technique, p<.001 for map-matching), so 

the null hypothesis that the data are normally distributed was 

rejected, and we concluded that they do not follow a normal 

distribution. We compared the errors using a Wilcoxon 

signed-rank test, which revealed a significant difference 

between conditions (p=.005). 

These results, shown in Fig. 10 (left) show that overall, the 

proposed method significantly outperformed map-based 

localization using on-board sensors.  

5.2.2    Tracking failures 

In the map-matching condition, the robot sometimes got lost, 

unable to match its laser scans to the environment map. In such 

cases, localization error can grow without bound. Although 

some recovery solutions have been proposed for the 

“kidnapped robot problem,” scan-matching alone is not 

intrinsically able to recover from such failures. 

A similar phenomenon can also occur using our proposed 

technique. If a robot is associated to the wrong tracked entity, 

its localization error can suddenly become very large. 

The mean localization error thus represents a combination of 

a steady-state level of error while the system is working 

correctly (correct map-matching or correct association), and a 

potentially large contribution of error when a “tracking failure” 

occurs in either map-matching or the proposed method. 

It is not trivial to identify when a tracking failure has actually 

happened, so we chose to consider any error larger than a 

threshold to be a “tracking failure” in our analysis. We chose a 

threshold of 1 m, although very similar results can be observed 

for smaller or larger thresholds, as the purpose is simply to 

separate small errors observed in normal operation (e.g. 10 cm) 

from large errors due to tracking failures (e.g. 5 m). 

 To examine the average error during periods of successful 

localization, we removed all tracking failures from the dataset 

and compared the mean localization error for each of the ten 

trials between the two conditions, the results of which are 

shown in Fig. 9 (right).  

 To check whether the data followed a normal distribution, 

we again ran the Shapiro-Wilk test. Data from each condition 

did not fall into significance (p=.057, p=.085), thus we 

concluded that they follow a normal distribution. Then, we 

conducted a repeated-measures ANOVA, which showed a 

significant difference between conditions (F(1,9)=113.911, 

p<.001, η2=.927). These results indicate that although a 

majority of the localization error in the map-matching system 

can be attributed to tracking failures, the proposed system still 

significantly outperforms the map-matching system even when 

those errors are ignored. 

Furthermore, an important advantage of our technique is its 

ability to quickly recover from tracking failures. As Table 2 

shows, although our algorithm encountered 12 tracking failures 

(primarily due to incorrect associations), it was able to recover 

from each one within seconds. Overall, tracking failures only 

occurred 0.65% of the time for the proposed system, compared 

with 7.55% of the time for the map-matching system. 

This simulation not only illustrates that improved accuracy 

can be obtained by using fixed sensors rather than on-board 

sensors, but furthermore demonstrates the proposed system’s 

intrinsic ability to recover quickly from tracking errors. 

6    Field  Performance Evaluation 

Stability in tracking during crowded situations is another key 

requirement of this system. The previous evaluation 

demonstrated the basic accuracy of the system in a simulated 

environment, but in real field deployments, there may be 

multiple robots interacting with many people.  The presence of 

people and other robots in the environment may contribute to 

increased occlusions, and the proximity of people to the robots 

and increased number of trajectories may contribute to 

ambiguities which could reduce the tracking performance of 

Fig. 10  Comparison of accuracy between the proposed localization 

method and a map-based localization technique. Extended tracking failures 
caused the overall average error to be much higher for the map-matching 

system. Even excluding these tracking failures, our proposed system still 

outperformed the map-matching approach in simulation. 

Table 2. Results from comparison in simulation 
Measurement Map-matching Proposed 

System 

Mean Error (s.d.) in mm 1194 (3964) 71 (129) 

Number of tracking failures 7 12 

Longest tracking failure duration 841.1s 15.9s 

Mean tracking failure duration 126.3s 6.4s 

% time in tracking failure state 7.55% 0.65% 

Mean error in mm during tracking 

failure 

13690 1430 

Mean Error (s.d.) in mm 
Excluding tracking failures 

174 (107) 62 (64) 
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our proposed system. To verify the performance of our system 

in such challenging conditions, we performed an evaluation of 

our system in the field, measuring its ability to track a team of 

four robots moving around and interacting with people in a 

crowded shopping arcade. 

6.1    Environment 

These evaluations were conducted in an open space roughly 

20 m long by 5 m wide in Universal CityWalk Osaka, a 

shopping arcade in front of the Universal Studios Japan theme 

park. Within this space we simultaneously operated four 

humanoid robots for a number of demonstrations and 

experiments. During the demonstrations, it was common for 

more than 30 people to be present in the space, often crowding 

around the robots to interact with them. 

This environment used the wired version of our tracking 

system. Six SICK laser range finders were installed in the space 

for human and robot tracking (see Fig. 11). 

 
Fig. 11  Overview of the Universal CityWalk field environment. Six laser 

range finders monitored the central area, where robots approached customers 

and offered directions and recommendations. 

6.2    Robot 

For the evaluations presented here, Robovie II humanoid 

communication robots (Kanda et al. 2004b) were used. These 

robots consist of a humanoid upper body mounted on an Adept 

MobileRobots Pioneer 3 differential-drive platform for 

locomotion. For map generation and map-matching, the robot 

was also equipped with a Hokuyo UTM-30LX laser range 

finder. 

6.3    Procedure 

We ran four robots simultaneously in the field trial 

environment on a moderately crowded day for 30 minutes 

(roughly the amount of time we could continuously run the 

robots before changing the batteries) and recorded the tracking 

data for that period.  

The robots were programmed to stop and interact with 

people who approached them, offering route guidance or shop 

recommendations to customers, as shown in Fig. 12. For these 

conversational interactions, the robot’s dialogue was 

teleoperated using the system presented in (Glas et al. 2012b). 

The teleoperator did not interact with the robots’ localization in 

any way. 

6.4    Measurement 

In this evaluation, high-accuracy measurements of ground 

truth were unavailable. Instead, the recorded laser and tracking 

data were inspected manually to identify tracking errors. By 

inspection of the raw laser scan data, it is possible to estimate a 

robot’s position by eye to within a few centimeters, and we 

recorded the distance between this position and the position 

estimated by the localization system. 

We then applied the same criterion as we did in Sec. V, in 

which we defined “tracking errors” as data points where the 

robot’s estimated position was at least 1 m away from its true 

position. 

 
Fig. 12  Photo of four robots interacting with customers in the field 

environment. 

6.5    Results 

During the trial, the area was fairly crowded, with an average 

of 10 people tracked in the space at any time, along with the 

four robots. There were 4 instances of tracking errors, all of 

which were automatically corrected. In total, there were 7.94 

seconds of tracking errors across the four robots during the 

30-minute trial, a result of 99.89% accuracy. On average, each 

error was corrected within 2 seconds, and the longest of the four 

errors lasted for only 2.61 seconds. 

Three of the errors occurred when the tracking system itself 

mistakenly switched the trajectories of the robot and a person 

standing very close by. In each case, the localization system 

successfully detected that the association was no longer valid, 

and it automatically reassociated the robot to the correct 

trajectory. The fourth error occurred in an area where tracking 

was briefly lost due to poor sensor coverage, and the robot was 

correctly reassociated after the tracking system redetected it. 

In conclusion, the localization system worked quite stably. 

Even though there were many occlusions and the area was quite 

crowded, there were very few instances of tracking errors, and 

the localization system quickly compensated for errors made by 

the underlying tracking system. 

http://dx.doi.org/10.1007/s10514-015-9426-3
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7    Stability toward change in the environment 

An important advantage of our technique over traditional 

map-based localization is its stability toward change in the 

environment. Environments such as shopping malls provide a 

particular challenge to localization because features of the 

environment change quite frequently, as product displays and 

vendor stands are often rearranged. For robots to provide 

service in these environments, robustness to such changes is a 

necessity. 

We compared the proposed method with map matching in a 

real shopping mall environment for two reasons: first to 

confirm whether the differences observed in our simulation 

would also be seen in the real world; and second, to observe the 

robustness of map-matching to the changing features typical of 

a commercial environment like a shopping mall. 

Ideally, when environmental features change, a new map 

should be created to provide the best localization accuracy; 

however, in a shopping mall, features can change significantly 

even within the span of a single day, whereas creating a new 

map can take a considerable amount of time and would be 

logistically impractical. In our experiment, we compared the 

performance of our system against two map-matching 

conditions: one using a current map, and one using a map built 

on a different day. 

7.1    Experiment design 

In our experiment, we manually drove the robot along an 

arbitrary path passing over twelve measured ground-truth 

points marked on the floor, stopping the robot at each point and 

verifying its location by eye. This process was conducted on 

two different days, when the product displays were in different 

arrangements, as shown in Fig. 13. 

We then compared estimates of the robot’s position using 

three estimation techniques. In the first condition, “LS,” we 

used the outputs of the localization system proposed in this 

paper, which was run online while the robot drove around the 

environment. In the next condition, designated “MM1,” we 

estimated the robot’s location by offline map-matching with 

recorded odometry and laser data, using an environment map 

generated using data taken on the day of the trial. Finally, to 

illustrate the degree to which changing environments affect the 

accuracy of map-based localization, we repeated the offline 

map-matching using a map generated using data from the other 

day of the experiment, a condition we designated “MM2”. 

Our expectation was that whereas the map-matching 

localization approach using a recent map should provide highly 

accurate results, its accuracy would decrease as the 

configuration of objects in the environment diverged from that 

in the initial map. Thus, we expected that the MM2 condition 

would provide much lower accuracy than MM1. 

Our localization system, on the other hand, is not map-based 

and thus is not sensitive to changes in the environment, so we 

expected the LS condition would provide slightly better 

performance than MM1, as our simulations suggested, and 

substantially better performance than MM2. 

7.2    Environment 

This evaluation was performed in Apita Town Keihanna, a 

shopping mall in Kyoto, Japan, where we have conducted 

several field studies in which mobile robots interact with 

shoppers (Iwamura et al. 2011),(Saiki et al. 2011) 

The area studied in this evaluation was a space 

approximately 15 m wide and 30 m long in the central area of 

the mall, where a robot might be deployed to assist shoppers. 

Seasonal and event-oriented products are on display in this 

area, and their arrangement changes over time based on 

availability or events. Fig. 2 shows photos of this area taken on 

different days to illustrate this variation. 

Some features in this space were fixed, such as columns, 

walls, service desks, and an escalator; whereas other features 

such as product displays changed on a daily, weekly, or 

seasonal basis. 

 

  
Fig. 13 Grid-maps of environment on two different days in a shopping mall. 
The features shown in black are permanent fixtures, whereas yellow features in 

the center are temporary product displays which are moved or replaced 

periodically. The gray area shows the region where the robot was driven, and 
white circles mark the environmental sensor positions. 

 

In this environment, we set up the wireless variant of our 

tracking system using 7 Hokuyo UTM-30LX sensors (nominal 

range 30 m). These sensors were placed around the perimeter of 

the space. 

We conducted our experiment during normal business hours 

at the shopping mall. The area was open to customers as usual, 

and people with shopping carts and baby strollers walked 

through the area during our testing, doing their everyday 

shopping. However, our experiments were conducted on 

weekday afternoons, during which time pedestrian traffic was 

very low. The robot did not interact with any customers in this 

experiment, and there were very few people in the environment 

and thus few occlusions which could interfere with either of the 

two localization techniques. 

http://dx.doi.org/10.1007/s10514-015-9426-3
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7.3    Evaluation of the proposed technique 

For this evaluation, both the robot and the environmental 

sensors were connected by wireless LAN to a server running 

our localization software, which is our standard field-trial 

configuration. Range data from the sensors and odometry data 

from the robot were sent to the server every 30 ms, and the 

server sent localization corrections back to the robot at the same 

frequency. These corrected values were logged for later 

comparison with ground truth. 

As a reference for measuring the accuracy of this technique, 

we marked 12 points on the floor and measured their locations 

to provide ground truth. We then drove the robot manually 

around the area, stopping it over these ground truth points. 

After visually confirming that the robot was aligned over a 

ground truth point, we logged both the robot’s true position and 

its internal estimate based on our localization technique. 

7.4    Map-based localization technique 

This evaluation used the same map-matching technique used 

in the simulation experiment. On each day, we first generated a 

map by driving the robot slowly through the environment one 

time, turning it as little as possible. In offline processing, laser 

scan points representing moving objects such as people, 

shopping carts, and baby strollers were removed from the scan 

data. A grid map was then generated using scan data and 

odometry data from the robot using ICP-based SLAM. 

To generate localization accuracy estimates for MM1 and 

MM2, we replayed laser scan data and odometry data in an 

offline simulator, again removing dynamic obstacles, and we 

used a particle filter to estimate the robot’s position using a 

ray-tracing approach to estimate particle likelihood. Further 

details about the technique are presented in the Appendix. 

7.5    Calibration 

To provide a fair comparison of tracking accuracy, it was 

necessary to align both the generated scan maps and the human 

tracking system precisely to the ground-truth coordinate 

system. In both cases, this alignment was performed manually. 

For the scan maps, the robot was driven to and stopped at 

several ground truth points during the map-building run, and 

these points were used to align the coordinate systems in offline 

processing. 

For the sensor network, registration with the ground-truth 

coordinate system was performed online before the experiment 

using detected positions of people standing at each of the 

ground truth points. 

7.6    Data acquisition 

 On each day, we manually drove the robot for 30 minutes 

along an arbitrary path within this space. Throughout each trial, 

we recorded raw odometry, laser range data, and the 

coordinates provided by our localization system. At each 

reference point, the robot was stopped, and its position was 

verified by eye. If the position was within +/- 2 cm of the 

reference mark, its coordinates and timestamp were logged. 

During each trial the robot drove over approximately 40 

reference points. 
 

This procedure was performed on two days, and then the 

offline map-matching estimates MM1 and MM2 were 

computed for both days of data. 

7.7    Results 

Between the two trials, we recorded a total of 81 instances of 

the robot driving over ground-truth reference points. The 

results of our error computations for the three measurement 

conditions are shown in Fig. 14 and summarized in Fig. 15, and 

the scatter plots in Fig. 16 show the absolute offset of each 

localization estimate with respect to ground truth. 

The accuracy of our system (LS) was slightly better than that 

of the map-matching system with the same-day map (MM1), 

confirming the same trend we saw in the simulation data, 

although the magnitude of the difference was smaller. 

The results of this experiment confirm not only that our 

proposed approach outperforms map-matching when an ideal 

same-day map is available, but also that the benefit of using our 

proposed technique rather than a map-based approach becomes 

greater as features in the environment diverge from the 

recorded map. 

 
Fig. 14 Raw data of localization over time, comparing our proposed method 

with both sets of map-matching results. 

 

 
Fig. 15 Average localization error results from our field experiment. 
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7.8    Discussion of results 

7.8.1   Comparing field and simulation results 

 While the proposed method was more accurate than map 

matching in this field experiment, the difference was not as 

large as would be expected from the simulation results, i.e. 

comparing with the results in Fig. 10 (right). We believe that 

there are several possible explanations for this.  

First, the positions of the sensors are not known perfectly. 

Our calibration system (Glas et al. 2010), has been 

demonstrated in the laboratory to estimate relative sensor 

positions within 40 mm and 0.5 degree error, but this 

performance varies according to the geometry of the sensor 

placement. 

Second, the sensor mounting poles have become damaged 

over time and are not always perfectly level, and these pitch or 

roll offsets were not modeled in our tracking system. However, 

even considering these factors, the accuracy of our proposed 

system was still better than the map-matching case. 

7.8.2   Frequency of feature changes in the environment 

The localization error of the map-matching system was more 

than twice as high when using the different-day map (MM2), 

illustrating the sensitivity of a typical map-matching approach 

to changes in the environment. 

Regarding the significance of this point, we would like to 

note that although we investigated the change of environment 

that occurs between two different days, it is also common for 

map features in a shopping mall to change even within the span 

of a single day. Examples include setting out and organizing 

new inventory in shop entrances, reorganizing products after 

customers have been browsing through or buying them, 

stacking full and empty crates as new inventory is unloaded, the 

highly variable number of shopping carts and shopping baskets 

available near the entrance to a supermarket, and 

time-dependent businesses such as lunchbox stands or placing 

signs in front of restaurants around meal times. 

8    Discussion 

8.1    Applicability 

Our assumption of the existence of a sensor framework 

might seem unreasonable and limiting – after all, one cannot 

expect the entire world, or even an entire shopping mall, to be 

fully covered with embedded sensors. 

We believe this is not a problem, as our proposed tracking 

and localization system is most useful in crowded spaces, 

where there will be many occlusions and distant people will not 

be visible to the robot, and in dynamic environments, like an 

entrance or market area where the vendor stalls and product 

displays are expected to change frequently. These are the areas 

where we believe it will be most useful to install external 

sensors. These also correspond to the areas where we believe 

social robots will most likely be deployed.  

For other areas which are less crowded, or where the robot is 

not expected to interact heavily with people, we expect that 

such a sensor network might not be available. It may still be 

necessary for a robot to pass through these areas, but in these 

cases localization using on-board sensing should be sufficient.  

8.2    Combination of approaches 

Our proposed technique is designed such that if a robot is not 

associated to a tracked entity, no corrections are sent to the 

robot. This design makes it possible for the robot to rely on an 

on-board (e.g., map-based) localization system at times when it 

is not being tracked by the environmental sensors. Such a 

hybrid approach could take advantage of the strengths of both 

systems and be useful in scenarios where only part of an 

environment is covered by a tracking system. 

In our field experiments we have used such a hybrid 

approach, relying on map-based localization when the robot is 

outside the areas covered by external sensors, and switching to 

the proposed system when the robots enter the covered areas. 

 
Fig. 16 Scatter plots of estimation error. Points shown represent absolute offset of each localization estimate from its corresponding ground truth reference point. 
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8.3    Tracking systems in dynamic environments 

We have shown that our technique outperforms 

map-matching when the environment changes, but this raises 

the question of how robust the tracking system is in dynamic 

environments. 

Although our system does not use a map for localization, 

each sensor does have a model of the shape of the background 

environment. Unlike a robot, however, the sensors do not need 

to move in order to update this scan model – it can be 

automatically generated from a sequence of several scan 

frames.  Typically we manually generate this in the morning 

after deploying the sensors, but we have also developed 

techniques for automatically detecting when a sensor has been 

moved or the environment changed, and for automatically 

calibrating the sensor positions (Glas et al. 2010; Glas et al. 

2012a). 

When pedestrian traffic is very heavy, occlusions can make 

reliable tracking difficult if only waist-level sensors are used. 

The use of ceiling-mounted RGB-D sensors rather than 

waist-height LRF’s incurs a higher setup cost, but is more 

robust to occlusions (Brščić et al. 2013). As our proposed 

technique is independent of the specific tracking system used, it 

can work with ceiling-mounted systems as well. 

8.4    Additional advantages 

8.4.1   Non-invasive setup 

In a real commercial space, it is important to avoid disrupting 

the shopping environment whenever possible. However, tasks 

such as map-building cannot be performed outside of business 

hours, because the features of the environment change 

significantly as soon as the shops open their shutters and put out 

their merchandise. Thus, accurate maps can only be built while 

the shops are open, a procedure which if repeated each day 

could be disruptive to the social environment. Our proposed 

sensor system is not affected by such changes in features, so it 

could be set up even before shops open for business.  

8.4.2   Coordinate system registration 

In any application where mobile robots must interact with 

people, it is necessary to guarantee that the robots are localized 

in the same coordinate system as the people being tracked. One 

convenient property of our system is that this registration 

occurs implicitly, as the same system is tracking all entities. 

While not a theoretically difficult problem, it is a practical 

consideration in the deployment of systems in the field, and the 

use of the sensor system for tracking all people and robots 

greatly simplifies this task. 

8.4.3   Ease of integration 

An additional merit of our system is that it can easily 

accommodate new robots, as they do not need special 

hardware, e.g. to receive signals from beacons. In fact, robots 

do not need any sensors at all for localization. Robots can take 

advantage of our localization system simply by adding a socket 

client that sends odometry data to our server and receives 

localization corrections. This functionality has come in quite 

useful when conducting joint field demonstrations with other 

research organizations where different robot types, such as 

robots with omnidirectional locomotion, are used. 

8.5    Limitations  

8.5.1   Robots outside the tracking area 

The proposed technique assumes that every robot connected 

to the system is physically within the tracking area. The 

possibility that this assumption is violated (e.g., a robot goes 

offline or drives outside of the tracking area) is not explicitly 

modeled in the proposed association algorithm. In our 

implementation, a robot must signal the system when it has 

entered or left the tracking area. This can be done 

autonomously if the robot has a rough estimate of its position. 

8.5.2   Ambiguous situations 

Regarding robustness when multiple robots are being 

tracked, we have observed the system to perform best when the 

robots are all moving. When multiple robots are stopped for 

extended periods of time, the system cannot distinguish 

between them based on their recent motion history. This 

ambiguity usually occurs at system startup, and associations are 

corrected as soon as the robots begin moving.  

9    Conclusions 

We have presented a novel system for localizing social 

robots using a network of laser range finders embedded in the 

environment. While the practice of placing sensors in the 

environment is not common for many robot applications, such a 

system can provide many benefits for social robot applications 

by providing information about pedestrians in the environment. 

In environments where such an infrastructure is available, our 

proposed technique provides several advantages over 

traditional map-based localization. 

Simulation results show our approach to provide better 

tracking accuracy and faster, more reliable recovery from errors 

than a common map-matching localization technique using an 

on-board sensor. We have also demonstrated in the field that 

the system can localize several robots reliably in real time, even 

in high-occlusion situations when large numbers of people are 

present in the environment.  

Finally, we have shown that our approach outperforms 

map-matching with on-board sensors in the field as well, and 

that the improvement provided by our system is particularly 

large when the map-matching system is using an outdated map 

in an environment where reference features change frequently. 

While our proposed approach is not a replacement for 

techniques such as SLAM in the field of robotics in general, we 

believe it to be a valuable technique for social robots in 
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particular, and that it will enable the deployment of many kinds 

of social robot applications in active and dynamic everyday 

environments. 

Appendix 

Most mapping and localization approaches for mobile robots 

rely on the assumption that environments are static and do not 

change over time. Many dynamic obstacles such as pedestrians 

were present in our shopping mall environment, necessitating a 

method for removing moving objects from the robot’s scan 

data. The next subsection explains this approach. 

Obstacle removal 

First we processed each scan of laser data, grouping points 

into clusters. When two consecutive points are within 0.1 m of 

distance they are grouped as a cluster. A covariance matrix is 

built from the point distribution of each cluster and the 

eigenvalues of the matrix are computed to analyze the shape of 

the cluster. If the length of a cluster is smaller than 0.5 m and 

the cluster distribution does not represent a straight line then it 

is determined that the cluster is a potential moving obstacle 

(one or two human legs together, a scan of a typical baby cart, 

or one of the simulated humans described in Section 5) and it is 

removed from the scan data. With this method small moving 

obstacles can be erased from the scan data for map building and 

localization. The drawback is that some small clusters which 

are part of the environment are removed as well; however, the 

noisy moving measurements are erased from the scene 

improving the resulting map and the localization performance. 

Map building  

As many variations of SLAM exist in the field of robot 

navigation, we aimed to use commonly-available tools and 

techniques for our comparison. 

Map generation was performed by driving the robot slowly 

through the environment, avoiding frequent turns whenever 

possible. In our algorithm, we first erased from the laser scans 

small features, such as human legs, shopping carts, and baby 

strollers from the raw data, based on the cluster analysis criteria 

explained in the previous subsection. The laser scan and 

odometry data from the robot was recorded for this 

map-building run, and a raster map was built offline by an 

ICP-based SLAM to correct the trajectory of the robot and align 

the scans (Borrmann et al. 2008) using 3DTK SLAM software 

using 2D data (3DTK). With the resulting data we built a grid 

map (Moravec and Elfes 1985),(Elfes 1989) with the same 

coordinate system as the human tracking system. 

Localization technique 

To generate map-matching localization estimates for the 

experiment trials, we replayed laser scan data and odometry 

data in an offline simulator. Based on this data, our localization 

algorithm used a particle filter to estimate the robot’s position. 

The particle filter estimates the robot position with a weighted 

set of particles. The position of each particle is estimated using 

wheel encoder data. Particle likelihoods are updated using the 

previously constructed grid map with a ray tracing approach 

(Fox 2003),(Fox et al. 1999). In our implementation, we used 

200 particles for the robot position estimation. 
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