
Human-Robot Interaction Design Using Interaction

Composer
Eight Years of Lessons Learned

Dylan F. Glas

Hiroshi Ishiguro Laboratories

ATR

Kyoto, Japan

dylan@atr.jp

Takayuki Kanda

Intelligent Robotics and

Communication Laboratories, ATR

Kyoto, Japan

kanda@atr.jp

Hiroshi Ishiguro

Intelligent Robotics Laboratory

Osaka University

Toyonaka, Osaka, Japan

ishiguro@sys.es.osaka-u.ac.jp

Abstract— Interaction Composer, a visual programming

environment designed to enable programmers and non-

programmers to collaboratively design social human-robot

interactions in the form of state-based flows, has been in use at

our laboratory for eight years. The system architecture and the

design principles behind the framework have been presented in

other work, but in this paper we take a case-study approach,

examining several actual examples of the use of this toolkit

over an eight-year period. We examine the structure and

content of interaction flows, identify common design patterns,

and discuss elements of the framework which have proven

valuable, features which did not solve their intended purposes,

and ways that future systems might better address these issues.

It is hoped that the insights gained from this study will

contribute to the development of more effective and more

usable tools and frameworks for interaction design.

Keywords— Visual Programming; Social Robotics;

Interaction Design; Design Patterns

I. INTRODUCTION

Visual programming languages (VPL’s) are becoming
increasingly common in the robotics world. In part, this is
because visual tools make it possible for high-level robot
behaviors to be programmed by subject-matter experts and
non-programmers. VPL’s have been used in industrial
robotics for years, and their importance for social robotics
has been recognized more recently as an important
consideration if robots are to be used in therapy, education,
or other real-world applications [1, 2].

Although several works have addressed design principles
for VPL’s in general [3, 4], there has been little discussion
regarding their application to social robotics. The VPL’s
existing today for social and home robotics vary greatly in
their structures and feature sets, and in order to begin
developing guidelines to inform the design of such systems,
it is helpful to observe how existing systems are used.

Interaction Composer, shown in Fig. 1, is a visual
programming framework developed in our laboratory for the
purpose of enabling non-programming end users to
collaborate with programmers in interaction design for social
robotics [5]. In this work, we take a case-study approach,

examining several applications which have been developed
over the last eight years using this framework. We examine
the structures and models used in the applications and
interview users of the system in order to identify common
design patterns, programming techniques, and desired
capabilities of a VPL for social robotics. Finally, we discuss
how these observations can help inform the development of
other visual programming languages for social robotics.

1) Visual Programming for Robotics
A great number of visual tools have been developed for

robotics in general, although some are intended for tasks like
system configuration and are designed for programmers,
rather than non-programming end users. We will mention a
few tools here, although the list is much longer.

RoboLab and LEGOEngineer were early visual
programming languages based on LabView [6]. Other
frameworks including visual programming tools include
Microsoft Robotics Studio [7], Gostai Studio1 for Urbi, and
Tekkotsu [8], and ROSCommander for ROS [9]. The Social
Robot Toolkit allows children to program robots visually

1 http://www.gostai.com/products/studio/gostai_studio/

Fig. 1. Screenshot of Interaction Composer graphical interface. The center

panel shows the program flow in the current sequence, the left panel lists
all sequences available in the project, and the right panel shows the library

of configured instances of behaviors and conditional branches. The bottom

panel shows compilation information, including error notifications.

303978-1-4673-8370-7/16/$31.00 © 2016 IEEE

mailto:dylan@atr.jp
mailto:kanda@atr.jp
mailto:ishiguro@sys.es.osaka-u.ac.jp

using physical stickers [10], and RoboFlow [11] integrates
learning-by-demonstration with visual programming for
physical manipulation tasks.

2) Visual Programming for Social Robotics
For social robots in particular, perhaps the most well-

known and widely used visual programming framework is
Choregraphe, Aldebaran’s software used for programming
the NAO and Pepper robots [12]. Another visual language
based on TiViPE [13] was created to enable non-
programming therapists to program Nao robots in [2], and
RoboStudio is a visual programming environment designed
to enable subject-matter experts to develop applications for
healthcare service robots [1], with a focus on graphical
interfaces on the robot’s touch panel.

Several tools have also been developed for virtual agents,
such as the NPCEditor framework in the Virtual Human
Toolkit, which includes graphical tools for developing and
editing question-answer dialogs, nonverbal behaviors, and
other aspects of social interaction [14].

Although we will not directly compare these different
systems, it is worth keeping in mind that each of these tools
has solved design tradeoffs in different ways. For example,
Choregraphe and NPCEditor represent dialog content in list
form rather than as a flowchart, and the TiViPe system
focuses on graphical touch panel interfaces. We hope to help
creators of future VPL’s by presenting ways in which IC has
been used, to help them envision the kinds of interaction
models which might be useful to support.

3) Interaction Design for HRI
Regarding interaction design for HRI in general, some

studies have focused on the importance of iterative design.
For example, Lohse et al. emphasize that a robot control
framework should fundamentally support iterative design
[15]. IC provides good examples of this, as it has frequently
been used in real iterative development for several field
deployments and many laboratory trials.

We will also attempt to identify some frequently-
observed techniques which might be considered as “design
patterns.” Some of these are similar to the design patterns of
sociality described in [16], although that study examined

behavior at a high level, and our focus is on the
implementations at a more programmatic level.

II. SYSTEM DESCRIPTION

In this section we will briefly describe Interaction
Composer (IC), the visual programming framework
examined in this study. More details can be found in [5].

A. Architecture Overview

The basic architecture of the Interaction Composer
framework consists of a front-end graphical interface in
which an interaction designer can link colored blocks into a
flowchart, such as illustrated in Fig. 2. The blocks represent
robot behaviors (blue), conditional branches based on state
variables and sensor inputs (pink) or encapsulated
subsequences (yellow). The GUI is used to create sequences
of actions and conditions flowing from left to right, which
can be compiled to an intermediate language and executed by
an interpreter on the robot.

Fig. 2 shows an example of a simple restaurant guide
sequence. In this example, the robot asks what type of
restaurant a person is interested in, and based on their reply,
it executes one of three guide behaviors. Afterwards, the
robot confirms that the person understood the directions and
repeats the directions if they did not understand.

Implementations of the behaviors, variables, and sensor
inputs are written in C++ and compiled on the robot, and the
GUI is updated to show an icon for each compiled behavior
that is available. This enables programmers to customize the
functionality available to the designers, and it allows the
framework to be used with different robots having different
capabilities.

B. Programming Elements

Here we will present concepts and terminology relating
to each of the elements of the GUI. The basic block types are
shown in Fig. 3.

Fig. 2. Simple example of a sequence for selecting guide behaviors. Blue

blocks show behaviors, pink blocks show flow control, and yellow blocks

show subsequences.

Fig. 3. Types of blocks in Interaction Composer. Top row: behavior

blocks. Middle row: condition blocks. Bottom row: a sequence block and

an interrupt.

304

A behavior block represents a robot action. Behaviors
can range from simple tasks, such as speaking an utterance or
setting an internal variable, to complex tasks, such as
dynamically generating speech, or planning the robot’s
navigation. By our convention, blocks which produce speech
and/or movement are blue, and blocks for functions which
produce no visible output, such as setting variables, are gray.

The code which executes the action is defined in C++
code and referred to as a behavior template. The end user
can create any number of behavior instances, that is,
configured instances of a behavior template in a flow, and
these are usually customized using arguments. For example,
a “Talk” behavior takes as an argument the phrase to speak,
and a “Move to point” behavior could take as arguments the
target location and desired speed. These arguments can be
constant, or they can be based on dynamic values such as
sensor inputs. A single template such as “talk” might have
hundreds of instances within a given flow.

Next, condition blocks, shown in pink (Fig. 3, middle),
allow a designer to create branches based on any internal
variable or sensor input, such as speech recognition, touch
sensors, or human detection. Special blocks are provided for
random, cyclic, or sequential selection (i.e. take the first
branch the first time, second branch the second time, etc.).

 IC flows are hierarchical, so any flow can be
encapsulated as a sequence and used within another flow.
These blocks are yellow (Fig. 3, bottom left).

Finally, interrupts can be created, represented by dashed
boxes (Fig. 3, bottom). An interrupt watches for a specific
condition. Whenever the condition becomes true, the normal
program flow is suspended and the execution flow jumps to
the sequence in the interrupt. When the interrupt sequence
finishes, it can return to the previous point in the flow or exit
to the end of the sequence.

For social robots, speech and gesture are of particular
interest. IC contains a visual tool for mapping gestures to
parts of the utterance text using color-coded markup tags.
The user can view these gesture tags as color-coding in the
text, or as full XML markup.

III. CASE STUDIES

To understand how the IC framework was used in
practice, we examined several actual flows used for
experiments and demonstrations, and we interviewed users
of the system. We will describe three of the flows in detail
and briefly summarize the others to illustrate what kinds of
tasks were accomplished and what visual programming
techniques were used to achieve them.

A. Shopping mall

In this flow, a robot patrolled around a shopping mall and
provided directions to shops in the mall or played with
children. Over a period of several years, many variations of
this flow were developed, e.g. for mobile robots, static
robots, and even robotic shopping carts which carry people’s
bags. Some versions of this flow were used in experiments in
[17] and [18].

What was achieved: A rich set of playing, guidance, and
other dialog behaviors was created, and the robot became a
popular attraction in the shopping mall for several months.
Many children enjoyed talking and playing with the robot.

Structure: This flow contained over 1400 behavior and
condition blocks. To manage complexity, these were
encapsulated hierarchically into 30 abstracted sequences.
Fig. 4 shows the top-level sequence for this flow, consisting
of only 3 sequences.

The flow included many sequences for executing “play”
behaviors, such as guessing games, follow-the-leader
exercises, and rock-paper-scissors, and one large sequence
for route guidance, including 99 instances of guide behaviors
to shops in the mall. These sequences were quite frequently
reused in other flows, e.g. when a student needed to run an
experiment in the shopping mall context.

B. Supermarket

In this flow, a robot accompanied a customer while
shopping in a supermarket and chatted with the customer,
speaking phrases based on their location in the supermarket
as well as making small talk about the weather and similar
topics. This was used in the experiments reported in [19].

What was achieved: In this experiment, the robot
engaged in longer interactions, lasting around 15 minutes
each. It spoke a wide variety of location-based utterances
which were frequently updated based on sales and other
events in the shopping mall.

Structure: This interaction flow had an enormous
amount of spoken content, as many utterances had to be
prepared for each location and updated on different days.
Over 1200 “talk” and “ask” behaviors were created in a total
of 132 sequences.

Development process: For this flow, the student
conducting the experiment built the overall flow logic, then
an assistant edited and extended the flow to create all the
spoken content.

The bulk of the work needed to develop this flow was
focused on developing and tuning speech and gestures. The
assistant spent several weeks creating content and testing it
on virtual robots and real robots to adjust the timing of the
speech and the synchronization between speech and gestures.
We believe this scenario underscores the value of enabling
non-programmers to develop and test dialog-oriented
behaviors.

Fig. 4. Example of “main” sequence for shopping mall flow. Yellow

blocks represent subsequences.

305

C. Computer shop

This case was a demonstration conducted in the
laboratory, in which a mobile robot presented features of
various computers to a customer, as shown in Fig. 5, using
speech recognition and human position tracking to decide
which computers and which features to present to the person.

What was achieved: The robot was able to present two
computers and explain eight features of each. It reacted to the
customer’s motion, e.g. offering to introduce a computer
when a customer stood near it. The robot also proactively
offered information about the computers, using interaction
history flags to avoid presenting a feature multiple times.

What was unique: This interaction placed a stronger
emphasis on multi-turn dialog than other interactions we
examined. A large part of the development process involved
identifying alternative keywords for each expected utterance,
in order to handle interpersonal speech variations. For
example, customers might ask about the “monitor”, the
“display”, or the “resolution”, and each of these alternatives
needed to be added into the conditional branch leading to an
explanation of the display. On average, 12.2 speech
recognition candidates were created for each condition block.
A process for quick entry of expected speech recognition
results might be an important consideration in the design of a
visual programming language for conversational robots.

D. Other flows

Several other flows were also analyzed. We will briefly
summarize their contents here.

The shopping cart flow was another application in a
shopping mall, in which a customer could use a smartphone
to call a cart robot, which would carry their baggage and lead
them to a requested destination, one version of which was
presented in [18]. Several utterances were developed for
talking with the customer based on the requested destination.
The flow contained over 400 talk behaviors, designed for
various times of year, events in the shopping mall, and
destinations within the mall.

Interrupts were also frequently used in this flow. For
example, the cart waited at a location until an interrupt
detected that it was called by a user, and the cart performed
speech behaviors while moving to a location unless an
interrupt detected that it was stopped for an obstacle.

In the elementary school flow, a robot talked with
students in an elementary school science classroom about the
contents of their lessons. The flow began as one large
sequence with over 300 behavior instances. As the project
matured, it was cleaned up and organized into 35 different
sequences, showing that the users recognized the importance
of hierarchical organization for maintainability.

This flow also used interrupts frequently, as children
would often join and leave interactions with the robot while
it was talking with other children, and the experimenters felt
it to be important for the robot to greet or say goodbye to the
children when they did so.

The wheelchair flow was made for a talking robotic
wheelchair which responded to requests of its rider to drive
to various destinations and spoke to warn of events like
stopping to avoid collisions. This flow incorporated
behaviors for communicating with external systems, e.g.
allowing a user to request the wheelchair using a
smartphone, and sending requests to a remote server for a
navigation path to the requested destination.

Even though the flow contained many behaviors related
to driving, responding to service requests, and operator
notifications, “talk” and “ask” behaviors still constituted
78% of the behaviors created, again indicating that a visual
programming language for HRI should emphasize the ease of
creating and debugging dialog.

IV. EVOLUTION OF THE SYSTEM OVER TIME

As Interaction Composer has been used over a period of
several years, it is informative to observe how the system has
changed over time. During the first year, several new
features were added. Later, the system continued to grow as
behavior templates were created and shared by researchers.

A. Added Functionality

Support for Teleoperation: One of the first features added
was support for control by a teleoperator. Although the
system was originally intended for autonomous interaction
logic, it quickly became clear that teleoperation is highly
useful for testing during development, for operation in
Wizard-of-Oz experiments, and to enable supervisory control
due to safety and liability concerns in field deployments. The
interface was updated to enable a designer to place “jump
labels” in a flow. A teleoperator could then command the
system to jump to that point in the flow at any time. This
feature was and is still used frequently.

New Behaviors: Although the fundamental execution
framework did not change after the first year, many new
behavior templates were developed over time. Initially, only
a few behaviors such as “Talk,” “Guide,” “Shake Hands,”
“Set Database Flag,” and basic locomotion behaviors such as
“Rotate” and “Move” were implemented. Later, behaviors
such as “Approach” and “Walk Side-by-Side” were added,
incorporating newly-developed locomotion algorithms.

External resources: Many behaviors were developed for
integration with external resources. For example, a special
“DriveToPoint” behavior was developed to receive
destinations from an external path planner, and an
“OntologyBasedConversation” behavior was developed to

Fig. 5. Illustration of the computer-shop robot responding to the

customer’s movement around the shop.

306

connect to a server providing dialog management based on
an ontology. In one project, 41 behaviors were created for
communicating with remote servers. Most were related to
path planning or dialog.

B. Workflow and usage

The general workflow, especially for field trials and
large-scale deployments, was that assistants or students
would often create most of the conversational content of
interactions. For complex functionality, behavior templates
were developed by researchers or programmers and given to
assistants or students to use in flows they were building.

In some cases, the end users found some problem or
asked for some new feature, and the programmers updated
the behavior. For example, one assistant found in her testing
that the 10-second timeout on a “Shake Hands” behavior was
too long, so she asked to be able to set it manually. The
programmer then modified the interface for her.

Prior to the development of the IC system, all interaction
content for our robots was created by programmers and
included in C++ or text files. Perhaps the greatest benefit of
using IC has been that it enables assistants and non-
programmers to create robot interactions, freeing up
programmers to focus on more technical tasks.

For laboratory studies, as opposed to field trials, large
amounts of speech content were often unnecessary, so
collaboration with assistants was less important. In these
cases, users of the system were often engineering students
with a programming background. Interviews with these users
revealed that they liked using the interface in their work
because it clearly showed the execution state of the robot,
helping them to debug the systems they were developing.

 Finally, several non-programming researchers with
humanities backgrounds were able to develop robot
interaction flows on their own. We believe that there is great
benefit in the ability to directly program the robot through IC
rather than depending on students or programmers to
implement the interactions they design.

V. DESIGN PATTERNS

One aim of this study was to look for recurring patterns
or strategies in the flows which could indicate important
functions that a VPL for social robotics should support. All
of the following patterns were observed several times in the
flows we examined.

A. Low-level design patterns

Random Variation: In what is perhaps the most common
pattern we saw, a random branch is used to select one of
several synonymous behaviors to create lifelike variation.
We observed this pattern very frequently in many different
flows. Fig. 6 shows an example of a sequence in which the
robot randomly chooses one of three ways to ask a person to
repeat what they said.

Repetition Checks: In this pattern, a behavior is performed
in a modified way if the robot has already performed that
behavior at least once. This communicates that the robot
remembers interaction history, and it makes the interaction
seem less mechanical. For example, the robot could say, “As
I explained before,” to indicate that it remembers the
conversation history. Fig. 7 shows an example of this pattern
taken from the “computer shop” case study.

Library of Content: In some sequences, a large set of
customized variations of a behavior are created, and one is
selected based on some variable. Visually, these sequences
often consist of a large vertical stack of behavior instances,
which can be an awkward structure in a VPL.

One example of this was a “guide sequence” flow, shown
in Fig. 8, containing behaviors for giving directions to
multiple locations in a shopping mall. Guide behaviors were

Fig. 8. Left: Close-up of guide behavior selection flow. Right: Overview

of entire guide sequence for 99 locations.

Fig. 6. Typical “random variation” pattern, where one of three

synonymous utterances is selected at random.

Fig. 7. Example of a “repetition check” from the computer shop flow. If

the “explained-display” flag has been set, then the robot prefaces its

explanation with the phrase, “As I explained before”. Otherwise, it sets the

flag and presents the explanation.

307

prepared by hand for 99 locations in one shopping mall and
22 locations in another mall, and these behavior instances
were included in one sequence with an extremely large
condition block. The guide sequences were reused by nearly
everyone who used the robots at those locations.

We have observed other examples of this pattern as well,
including a library of navigation behaviors customized for a
set of many destinations, and a library of play behaviors and
games for the robot to play with children.

Handling Arrivals and Departures: A person walking
away in the middle of an interaction or interrupting an
interaction in progress is not an “error” in the sense of
system failure, but it needs to be addressed socially, e.g. by
an acknowledgment that a new person has joined or by
terminating an interaction if the person has left. We
frequently saw interrupts designed to handle such situations.

The example in Fig. 9 shows one such interrupt used in the
elementary school, in which the robot cancels its current
motion and speech, tells the interrupting person to please
wait because it is in the middle of an explanation, and returns
to finish the interrupted explanation.

External Parallelism: We frequently saw flows where
external resources were used for path planning, multi-robot
coordination, and other tasks. Typically, this was done by
sending start and stop notifications to the external resource,
often before and after a behavior in the flow.

For example, in some studies, the robot continually
adjusted its position according to commands from a remote

server in response to a person moving around the room. An
example of this is shown in Fig. 10, where a remote server is
used to dynamically adjust a robot’s position whenever the
robot presents a product. Each presentation behavior (one or
two blue blocks) is surrounded by two gray blocks, which
notify the remote server to start and stop the planner.

Event Notifications: For remotely supervised applications,
the designers often placed flags in the flow to notify an
operator of some important interaction phase. Even though
an operator can see all the low-level behaviors of the robot, it
is important for the designer to be able to communicate this
higher-level information to an operator. The “Notify Guide
Begin” blocks in Fig. 8 are examples of this pattern.

Proactive timing control: Another common pattern was a
“proactive timing control” sequence (Fig. 11), in which a
robot spoke a number of “filler” utterances while waiting for
a remote operator to become available to assist with speech
recognition [20]. Over 30 sequences using this pattern were
created for different seasons, locations, and scenarios.

Interchangeable Content: Sometimes multiple copies of a
sequence were found, with only a few elements changed in
each version. Elements which stayed the same often included
greetings, introductions, and handling of interruptions.

Fig. 11. A “proactive timing control” sequence. The robot speaks one

phrase at a time until an operator is available to assist speech recognition.

Fig. 12. An example of “interchangeable content” for a science class on

human reproduction. The interrupts handle common social situations,
while the lesson-specific quiz content is changed for each lesson.

Fig. 9. Interrupt used to handle arrival of a new child during an

explanation in the elementary school flow.

Fig. 10. Flow for presenting features of a refrigerator, in which a remote

server is used to manage the robot’s positioning. Gray blocks send start and

stop commands to the server before and after each set of one or more blue
speech behavior blocks, as shown in the enlarged area.

308

The elementary school flow included 5 sequences nearly
identical to the one shown in Fig. 12. These sequences had
the same overall structure, differing only by five blocks
representing content pertaining to a specific lesson (marked
in the figure as “lesson-specific content”). The remaining
structure was identical for each lesson and consisted mainly
of interrupts, handling social situations like when students
asked the robot to play games or talked about topics
unrelated to the lesson, or when the classroom bell had rung
and students were not allowed to interact with the robot.

Copying large parts of the sequence for every lesson
violates the “don’t repeat yourself” principle of software
engineering [18]. It could be useful for a VPL for social
robotics to support reuse of patterns like this, leaving only a
designated set of content to be customizable in each instance.

B. High-level structures

Among the sequences we examined, we found two
general patterns in how the flows were arranged. These can
be described as “progressive” and “reactive”.

Progressive structure: This is the kind of interaction in
which history is important. In such a flow, the robot does
something, the person does something, a branch is followed,
and the interaction progresses. These flows are characterized
by longer tree-like structures, such as that in Fig. 13.

Reactive structure: We also observed sequences in which
no linear progress is made in the interaction overall, and
history is not considered in actions. We found flows of this
type used for handling incidental errors like obstructions
while performing a task like locomotion. These flows are
characterized by loops or interrupts, as shown in Fig. 14.

We also observed some common top-level interaction
structures. For field deployments, it was quite common for
the robot to interact with many people, so the top-level
patterns were usually loops, with no “end” block. Usually
these took one of two forms. One was an idle-interrupt
structure, such as that shown in Fig. 4, in which the robot
performed some idle behavior until a person approached the
robot to initiate conversation. The second, more proactive,
structure was a patrol-approach-conversation structure, in
which the robot patrolled until a potential interaction partner
was detected, and then it actively tried approaching that
person and initiated a conversation if successful or returned

to patrolling if unsuccessful. These patterns were typically
seen in field trials, but not in laboratory experiments, where
the focus was usually on single interactions.

VI. DISCUSSION AND CONCLUSIONS

A. Description capability

Generally speaking, the hierarchical state-transition
representation used in IC appears to have been sufficient for
the majority of programming tasks examined here. In cases
where the robot needed to respond to asynchronous events,
we found the use of “interrupts” to be valuable.

 Although it was not originally part of the design, many
users used IC in conjunction with external systems, including
sensor networks, remote navigation planners, and a server
that managed conversation.

B. Usage observations

Here we will summarize some of the observations from
the case studies and interviews that we found interesting.

 Hierarchical encapsulation of sequences is important for
managing complexity and enabling reuse.

 Reuse of configured behaviors, reuse of entire sequences,
and reuse of design patterns were frequently observed.

 Interrupts were valuable for handling asynchronous
events and unexpected social situations in many flows,
and they seem like a valuable construct in general.

 Collaboration between researchers, students, and non-
programming assistants was important, especially for
large-scale deployments where hundreds of speech
behaviors needed to be developed.

 Even users focused on algorithmic work performed in
other software often found IC useful as a tool for
managing top-level execution logic.

C. Limitations

As this work is based on a small number of case studies,
the findings presented here are by their nature anecdotal and
subjective. However, we believe that seeing examples of this
system applied in practice can be valuable and informative to
the community.

Fig. 13. Sequence featuring a “progressive” structure for explaining

product features in a computer shop.

Fig. 14. Example of a “reactive” sequence, in which a robot follows a

person through a supermarket. Most logic is contained in interrupts and

handles asynchronous events.

309

 We also expect that the findings presented here will
generalize to some degree within the context of social
human-robot interaction, but there are some limitations due
to the form and capabilities of the robot – for example,
different requirements might arise for robots using touch
screen interfaces or performing physical manipulation.

D. Considerations for future systems

The use of interrupts in a state-based flow appears to be a
novel contribution of IC, and as interrupts were used in every
flow we studied, they appear to be a valuable mechanism.
However, some aspects of interrupts were unclear to some
users, such as whether they are inherited when subsequences
are called. Visualization of which interrupts are active at a
given level may help to make them more usable.

For complex computations, the need to connect to remote
servers for sensing and planning became more important.
This trend seems likely to increase as concepts like cloud
computing grow in popularity, so perhaps future systems
should include explicit support for such resources.

 A simple level of dialog management was achieved
using the flowchart-style interface, but it is not clear how
well this can scale. Even the more powerful dialog
management tools available in Choregraphe and NPCEditor
are quite limited in their expressive capability. However,
even if more powerful dialog models are used, it will still be
important to edit and test pronunciation and synchronization
of utterances with movement, and future systems should
consider how to involve non-programmers in these tasks.

Finally, we found that some representations did not scale
well using a flowchart-style interface. For example, the
vertical organization of behaviors in the “guide” sequence in
Fig. 8 seems not to work well with the graphical layout
paradigm, and it seems worthwhile to consider alternative
graphical representations for situations such as this.

To conclude, we expect that visual programming
languages will be of growing importance as subject-matter
experts and other nontechnical users become more involved
in developing interaction content for robots. In developing
such languages, it is valuable to learn from the experiences
of others and to understand typical usage patterns. In this
respect, we hope the case studies and insights we have shared
will be of value to the HRI community.

ACKNOWLEDGMENT

This research was supported by the JST ERATO Ishiguro
Symbiotic Human Robot Interaction Project.

REFERENCES

[1] C. Datta, C. Jayawardena, and B. MacDonald, "RoboStudio: A visual
programming environment for rapid authoring and customization of
complex services on a personal service robot," in Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ International Conference on,
2012, pp. 2352-2357.

[2] E. I. Barakova, J. Gillesen, B. Huskens, and T. Lourens, "End-user
programming architecture facilitates the uptake of robots in social
therapies," Robotics and Autonomous Systems, vol. 61, pp. 704-713,
2013.

[3] T. R. G. Green and M. Petre, "Usability analysis of visual
programming environments: a ‘cognitive dimensions’ framework,"
Journal of Visual Languages & Computing, vol. 7, pp. 131-174, 1996.

[4] A. F. Blackwell, "Metacognitive theories of visual programming:
what do we think we are doing?," in Visual Languages, 1996.
Proceedings., IEEE Symposium on, 1996, pp. 240-246.

[5] D. F. Glas, S. Satake, T. Kanda, and N. Hagita, "An Interaction
Design Framework for Social Robots," in Proceedings of Robotics:
Science and Systems, Los Angeles, CA, USA, 2011.

[6] B. Erwin, M. Cyr, and C. Rogers, "LEGO engineer and ROBOLAB:
Teaching engineering with LabVIEW from kindergarten to graduate
school," International Journal of Engineering Education, vol. 16, pp.
181-192, 2000.

[7] S. Morgan, Programming Microsoft® Robotics Studio: Microsoft
Press, 2008.

[8] E. Tira-Thompson and D. S. Touretzky, "The Tekkotsu robotics
development environment," in Robotics and Automation (ICRA),
2011 IEEE International Conference on, 2011, pp. 6084-6089.

[9] H. Nguyen, M. Ciocarlie, K. Hsiao, and C. C. Kemp, "Ros
Commander (ROSCo): Behavior creation for home robots," in
Robotics and Automation (ICRA), 2013 IEEE International
Conference on, 2013, pp. 467-474.

[10] M. Gordon, E. Ackermann, and C. Breazeal, "Social Robot Toolkit:
Tangible Programming for Young Children," in Proceedings of the
Tenth Annual ACM/IEEE International Conference on Human-Robot
Interaction Extended Abstracts, 2015, pp. 67-68.

[11] S. Alexandrova, Z. Tatlock, and M. Cakmak, "RoboFlow: A flow-
based visual programming language for mobile manipulation tasks,"
in Robotics and Automation (ICRA), 2015 IEEE International
Conference on, 2015, pp. 5537-5544.

[12] E. Pot, J. Monceaux, R. Gelin, and B. Maisonnier, "Choregraphe: a
graphical tool for humanoid robot programming," in Robot and
Human Interactive Communication, 2009. RO-MAN 2009. The 18th
IEEE International Symposium on, 2009, pp. 46-51.

[13] T. Lourens and E. Barakova, "User-Friendly Robot Environment for
Creation of Social Scenarios," in Foundations on Natural and
Artificial Computation. vol. 6686, J. Ferrández, J. Álvarez Sánchez,
F. de la Paz, and F. J. Toledo, Eds., ed: Springer Berlin Heidelberg,
2011, pp. 212-221.

[14] A. Leuski and D. R. Traum, "NPCEditor: A Tool for Building
Question-Answering Characters," in 7th International Conference on
Language Resources and Evaluation (LREC), Valletta, Malta, 2010.

[15] M. Lohse, F. Siepmann, and S. Wachsmuth, "A modeling framework
for user-driven iterative design of autonomous systems," International
Journal of Social Robotics, vol. 6, pp. 121-139, 2014.

[16] P. H. Kahn, N. G. Freier, T. Kanda, H. Ishiguro, J. H. Ruckert, R. L.
Severson, and S. K. Kane, "Design patterns for sociality in human-
robot interaction," in Proceedings of the 3rd ACM/IEEE international
conference on Human robot interaction, Amsterdam, The
Netherlands, 2008, pp. 97-104.

[17] K. Zheng, D. F. Glas, T. Kanda, H. Ishiguro, and N. Hagita,
"Designing and Implementing a Human-Robot Team for Social
Interactions," IEEE Transactions on Systems, Man, and Cybernetics -
Part A: Systems and Humans, 2012.

[18] D. F. Glas, S. Satake, F. Ferreri, T. Kanda, H. Ishiguro, and N.
Hagita, "The Network Robot System: Enabling social human-robot
interaction in public spaces," Journal of Human-Robot Interaction,
2012.

[19] Y. Iwamura, M. Shiomi, T. Kanda, H. Ishiguro, and N. Hagita, "Do
elderly people prefer a conversational humanoid as a shopping
assistant partner in supermarkets?," in Proceedings of the 6th
international conference on Human-robot interaction, Lausanne,
Switzerland, 2011, pp. 449-456.

[20] D. F. Glas, T. Kanda, H. Ishiguro, and N. Hagita, "Teleoperation of
Multiple Social Robots," Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on, vol. 42, pp. 530-544,
2012.

310

