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Abstract— In this paper we present a method for determining
body orientation and pose information from laser scanner data
using particle filtering with an adaptive modeling algorithm.
A parametric human shape model is recursively updated to
fit observed data after each resampling step of the particle
filter. This updated model is then used in the likelihood
estimation step for the following iteration. This method has
been implemented and tested by using a network of laser range
finders to observe human subjects in a variety of interactions.
We present results illustrating that our method can closely
track torso and arm movements even with noisy and incomplete
sensor data, and we show examples of body language primitives
that can be observed from this orientation and positioning
information.

I. INTRODUCTION

Advances in sensing technology and computing power

have pushed the frontier of robotics to a point where it is

not only conceivable but expected that robots will soon be

working among humans in a social context. In such appli-

cations, accurate position estimation and tracking of people

in the vicinity of the robot are essential, both for safety and

for smooth, context-aware interaction with humans.

Indeed, for robots to operate within society, it will be

necessary for them to detect the subtle cues of gesture and

body positioning that we naturally notice and respond to

subconsciously. Although many existing robotic applications

track the locations of humans, the wealth of information

encoded in posture and movement is often discarded in the

process.

We are developing methods of identifying a variety of

human behaviors and understanding social context using data

from ubiquitous sensor networks. In addition to data such

as location, speed, and relative positioning within a group,

pose-related information such as a person’s body orientation

can provide valuable insight into the dynamics of a social

interaction.

Scanning laser range finders are a popular tool for human-

tracking and navigation applications due to their precision,

effective sensing distance, and ease of use. Rough human

positions can easily be determined from laser scanner data,

and techniques such as particle filters enable more robust

position estimates to be achieved by reducing errors due to

noise and occlusion.

In this paper, we propose an extension to this general

position estimation technique, in which the body orientation

and pose are tracked in addition to position and velocity.

By incorporating a shape model into the tracking algorithm,

highly accurate estimates of torso and arm position can be

extracted, and we will show that these position estimates can

provide information valuable to the understanding of social

situations.

II. RELATED WORK

Human tracking is a well-developed field, and many as-

pects of the problem have already been explored extensively.

Our work involves the use of particle filters to estimate

human positions based on the nonlinear and noisy data of

laser scan measurements. Particle filters are a common tool

in the robotics community and have often been used in

conjunction with laser scan data for the purposes of robot

localization and mapping [1], [2]. A general overview of

robotic applications of particle filters can be found in [3].

Much of the human-tracking research to date has been

based on leg tracking [4], [5], [6]. Some reasons for this

include simplicity of shape (legs are roughly circular and

look the same from any angle) and visibility (legs are narrow

and tend not to completely occlude objects behind them).

Another consideration is that many robots use laser sensors

for obstacle avoidance, and for that reason already have laser

sensors mounted near the ground.

In our work, the laser sensors were part of an environ-

mental sensor network used exclusively for human tracking,

rather than robot-mounted sensors used for obstacle avoid-

ance. For this reason, we were able to mount the sensors

higher, above obstacles like furniture and ground clutter, to

a height where the positions of the arms and torso could be

clearly observed.

Although less common than leg-tracking, torso-level track-

ing is not without precedent in research. For example, a

real-time torso-level human tracking system utilizing particle

filters to process laser scan data was developed by Almeida

et al. in [7]. Their system, however, was focused specifically

on position tracking, whereas our work is concerned with

observing body orientation and pose in addition to position.

III. HUMAN DETECTION AND TRACKING WITH

ADAPTIVE SHAPE MODELING

A. Algorithm Overview

Our tracking technique is based on particle filtering, the

basics of which will be very briefly explained here. For a

more in-depth explanation, [8] provides a thorough treatment

of particle filters and many other state-estimation techniques.

Particle-filtering is a method of estimating the state of

a system by using a cloud of “particles”, each of which
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represents a hypothesis about that state. The following four-

step procedure is performed at each iteration of a traditional

particle filter.

1) Update The state of each particle is updated by apply-

ing an internal motion model, reflecting the dynamics

of the system, to the previous state estimate. The

motion model used in our work is described in Section

III-D.

2) Assign Weights Particles are then assigned weights

according to a likelihood model, which evaluates the

likelihood of the state represented by each particle

based on the latest sensor data. Our likelihood model

is described in Section III-E.

3) Estimate State At this point, the state estimate is

calculated, generally as a weighted average of the

states of the particles.

4) Resample Finally, the particles are removed or prop-

agated based on their weights to produce a new set of

particles which more accurately reflects the true state

of the system.

In this way, the cloud of particles converges on the most

likely state and follows it over time.

One often-criticized shortcoming of particle filters is their

poor performance in high-dimensional spaces. Typical par-

ticle filters used for people-tracking tend to use a four-

dimensional state space to model the position (x, y) and

velocity(vx, vy) of each person. Our human shape model,

described in Section III-B, has six variables. Tracking them

all in addition to position and velocity would more than dou-

ble the dimensionality of the state space, severely hindering

the efficiency of the particle filter.

To address this problem, we assume that the variations in

the body shape model parameters from one iteration of the

particle filter to the next are small enough that their effect

on the position and velocity estimates are negligible. We

consider this assumption to be generally justifiable (with one

exception, explained below) since the subjects move slowly

with respect to the update rate of the sensors (approximately

38 Hz in our case). This assumption allows us to use the

shape model from the previous iteration when calculating

likelihood weights for the particles, rather than trying to

estimate body shape simultaneously with position.

Our extended particle filter algorithm is illustrated in

Figure 1. A particle filter is used for tracking position and

velocity, while the parameters of the shape model are updated

after each state estimation step and incorporated into the

likelihood calculations of the particle filter during the next

iteration. The algorithm we use for updating the model

parameters is described in Section III-F.

Note that there is one model parameter for which the

above assumption does not hold. Due to the nonlinear nature

of fitting a shape to incomplete and noisy data, we have

observed that small changes in body orientation angle (θ

in our model) can substantially affect the particle filter’s

position estimates. Since this violates our earlier assumption,

θ cannot be treated as an independent variable. To address

this problem, the likelihood calculations only consider the

Fig. 1. Diagram of our particle filter implementation using an adaptive
shape model. The shape model is updated after every state estimation step,
and that updated model is used for shape-matching to determine particle
weights during the next iteration.

optimal body orientation angle, which is treated as a pure

function of position. During likelihood calculations, a fast

rotational shape-matching algorithm is used to determine the

body orientation angle θopt which maximizes the likelihood

for each particle based on its (x,y) location. In this way,

isolation of the body shape model from position and velocity

is preserved, and the state space searched by the particle filter

remains limited to four dimensions.

B. Human Shape Model

In our experience with laser scanning data, we have

observed large variations in cross-sectional contour shape

between subjects. This is due in part to individual differences

in body shape, and also to differences in height. The scan

plane of our sensors for this experiment was at a height of 90

cm, with the result that for taller subjects, the scan was taken

roughly at wrist-height, whereas for shorter subjects, the scan

plane was above elbow-height. Consequently, measured arm

movement was more pronounced for the taller subjects.

Another factor in contour shape is the type of clothing

being worn. For example, a loose shirt or a heavy coat can

make a person’s torso appear unusually large or asymmetri-

cal, as can a backpack or purse.

Taking these factors into consideration, the amount of

variation between subjects makes it difficult to develop a

precise, yet generalizable, model. Thus a simple three-circle

model was used for determining body orientation.

Our model is illustrated in Figure 2. A central, large

circle represents the person’s torso, and two smaller circles

represent the arms. This model has six parameters which

can be varied to best match a subject’s cross-sectional body

contour.

The parameters describing the state of this model are

summarized in Table I. The two parameters of primary

interest to us are θ and ϕ.
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Fig. 2. Our three-circle model, with the six variable parameters indicated.

We have designated θ to represent the angle midway

between the two arms. When a subject is standing still, this

coincides with the direction of torso orientation. While the

subject is walking, the swinging of the arms and torso cause

θ to oscillate around the direction of motion.

The parameter ϕ represents the angle of separation be-

tween each arm and the center angle designated by θ. This

tends not to vary far from 90◦, as the arms swing in alternate

directions during walking.

TABLE I

MODEL PARAMETERS

Parameter Description

θ Average direction of body orientation
ϕ Arm separation angle
dL Distance of left arm from body
dR Distance of right arm from body
rarm Arm radius
rtorso Torso radius

C. Data Association

The problem of associating detections with features can

become quite complex, particularly with large numbers of

objects and many occlusions. A variety of approaches have

been developed for this problem, some of which are de-

scribed in [5], [9], [10].

In our case, the humans move slowly with respect to

the sensor scan rate, and there tend to be few ambiguities,

so complex approaches such as these are not necessary. A

simple nearest-neighbor matching is used for associating data

points with humans. We will consider three aspects of data

association: continuous tracking, detection of entry events,

and detection of exit events.

1) Continuous Tracking: In our implementation, an in-

dividual particle filter is associated with each human upon

detection. This particle filter is updated during each step

and accordingly moves with the human it is tracking until it

has been determined that the filter is no longer tracking the

person.

To avoid the case of multiple particle filters tracking the

same human, a repulsive component is included in the like-

lihood model. A value described by a Gaussian distribution

centered around each human being tracked is subtracted from

the likelihood assigned to each particle, effectively creating

a repulsive force which prevents the convergence of two

particle filters on a single human.

2) Entry Events: The mechanism for detecting untracked

humans is based on a first-pass analysis of the raw sensor

data. The range readings from each sensor are thresholded

using a pre-calculated background model, and a set of

candidate locations is created by identifying segments of

contiguous foreground data points. The rules for this seg-

mentation model approximate humans as ellipses with a

minor axis of 15 cm and a major axis of 55 cm, taking

into consideration the possibility of partial occlusions and

using heuristic rules for outlier rejection. Finally, the center

of each ellipse is identified as a human candidate.

Particularly for distant and partially-occluded readings,

these detections can be unreliable due to noise and the

simplicity of the estimation rules. To improve the reliability

of detections, a 2-D windowing filter is applied to each

candidate position. At each step, human candidates within

a threshold distance of a windowing filter are absorbed into

that filter, and filters with no associated human candidates are

removed. Any filter which survives for a specified minimum

number of time steps is considered to be reliable human

position estimate, and only then is a particle filter assigned

to track the human at that position.

By filtering the sensor data in this way, the incidence of

false detections in noisy environments is greatly reduced.

3) Exit Events: The remaining task is the detection of

the disappearance of a human. When a person exits the

experimental area, no more data is available to reflect that

person’s presence, and the particle filter naturally disperses.

When minimum probability or maximum statistical disper-

sion threshold values are crossed, the human is assumed to

have left the area and the particle filter is removed.

D. Motion Model

The purpose of the motion model is to approximate the

probability of a state xt based on the previous state xt−1. The

state vector we used to model the motion of humans includes

four variables: x-position, y-position, walking speed, and

direction of motion.

As has been observed in [11], the modeling of human

motion presents difficulty because it is neither Brownian in

nature, nor can it be modeled as a smooth linear function,

since people may stop or change direction abruptly. Thus,

as a compromise between the two, we modeled the (x, y)
motion as the sum of a linear velocity vector and a Gaussian

noise component.

E. Likelihood Model

The purpose of the likelihood model is to approximate

the value of p(zt|x[m]
t ) for particle m, (m = 1..M) and
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measurement vector zt taken at time step t of the particle

filter.

Laser scan data provides two qualitatively distinct types

of information useful for estimating human positions: occu-

pancy information, indicating whether a certain point is oc-

cupied or empty, and edge information, indicating a contour

which may correspond with the edge of a detected object.

The likelihood model used here is expressed as the product

of two terms: pocc(zt|xt), based on occupancy information,

and pfit(zt|xt), based on a fit between a proposed human

position and the observed edge data, as shown in Eq. 1:

p(zt|x[m]
t ) = pocc(zt|x[m]

t ) · pfit(zt|x[m]
t ) (1)

The occupancy information component is computed using

a coverage grid, in which coverage information from all

six sensors is aggregated. The edge information component

is computed by estimating correctness-of-fit using a radial

accumulator array. Both of these components are explained

in detail below.

1) Coverage Grid: The coverage grid is a 5cm resolution

grid representing the coverage of the experimental space by

the laser scanners. In a real-world sensor network, noise due

to calibration errors, measurement errors, and timing errors

often produces paradoxical situations, such as the front and

back edges of a person overlapping, or one sensor indicating

that a region is empty where another sensor observes a

person. Thus, a simple grid of binary values would not

adequately represent the information contained in the sensor

data.

Instead, each cell Cx,y in the grid holds a value expressing

the number of sensors which currently confirm that square

to be empty. Thus, a cell with a value of zero is in an

unobservable region and so may possibly be occupied by

a human. A cell with a value of three has been positively

observed by three sensors to be unoccupied and thus is most

likely actually empty.

To account for the possibility of conflicting data (i.e. one

or more sensors erroneously observing an occupied space

to be empty), the occupancy likelihood pocc(zt|x[m]
t ), is

modeled as falling off exponentially as a function of the

value C
x
[m]
t

,y
[m]
t

stored in the coverage grid for that location,

as shown in Eq. 2. This method of calculation serves to drive

the particles into shadow regions in a smooth way, reducing

sensitivity to sensor noise. Kocc is a tuning parameter which

controls the noise tolerance of the function.

pocc(zt|x[m]
t ) = exp

(

−Kocc · Cx
[m]
t

,y
[m]
t

)

(2)

To speed up calculations, the entire grid is not populated at

every time-step. Instead, a just-in-time grid update policy is

adopted, whereby the value of a cell Cx,y is calculated only

the first time it is requested. That cell of the grid is then

cached for further accesses, which is particularly efficient

for dense clouds of particles covering a small number of

grid cells.

Fig. 3. Examples of populated radial accumulator arrays. Left: Populated
with human shape model data (Rref ). Right: Populated with sensor data
(Rm).

2) Radial Accumulator: The second component is the

radial accumulator, an angular array which keeps track of

the distance of detected data points from a proposed center

point. By grouping the data points into discrete angular bins,

the radial accumulator reduces the complexity of distance

calculations while retaining the overall shape characteristics

of the cluster of data points.

The metric chosen for evaluating the degree of fit between

the model and the data points was a normalized root sum

square calculation of radial distance. For each particle m at

position (xm, ym), the surrounding cluster of points Pm are

mapped into a radial accumulator array Rm with N equian-

gular divisions. For every set of points Pn
m, (n = 1..N)

falling in a particular bin, the distance of each point from

position (xm, ym) is computed and the maximum value of

that set is stored in Rn
m, until all points have been assigned.

Let R′

m indicate the set of bins which have at least one point

assigned to them, and let N ′ be the number of occupied bins.

A second radial accumulator array Rref is populated with

expected distance values for each bin based on the human

body model using parameters from the previous time step.

Fig. 3 shows examples of the two radial accumulator arrays.

Next, the normalized root sum square error ǫj is calculated

across all angular subdivisions, omitting bins which contain

no data points.

ǫj =
1

N ′

√

∑

n∈R′

m

(Rn
m − R

n+j
ref )2 (3)

To find the optimal value of θ, this procedure is repeated

for j rotations of the model, and the value jopt, which

minimizes the error ǫj , is calculated. θopt is defined as the

angle corresponding to bin index jopt, and the θ parameter

of the human shape model associated with this particle is

then set to θopt.

Finally, the edge-fit probability pfit is calculated as a zero-

mean Gaussian function of the minimum error ǫjopt
, with

an arbitrary standard deviation of σfit treated as a tunable

sensitivity parameter.

pfit(x
[m]
t ) =

1

σfit

√
2π

exp

(

−
ǫ2jopt

2σ2
fit

)

(4)
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Fig. 4. Comparison of sensor data (Rt) and human shape model (Rref )
after optimizing rotation angle.

Fig. 4 shows the contents of the two radial accumulators

after θ-optimization.

F. Model Adaptation

After the evaluation of each particle filter is complete,

the parameters of the corresponding human shape model are

adjusted to fit the current sensor observations. In our case, we

have chosen to leave the parameters rarm and rtorso fixed.

We next adjust the remaining parameters as follows:

a) Optimizing ϕ: Since ϕ has been observed not to

vary over a wide range, we limit it to between π
2 ± π

10
radians. Next, we discretize this angular range into 10 steps

and construct a human shape model for each step, performing

the θ-optimization procedure described in Section III-E.2 for

each model. By minimizing ǫj across all models, we obtain

optimal values for θ and ϕ.

Due to symmetry, arbitrary 180◦ flipping can be a prob-

lem. To remedy this, the range of possible θ values is

constrained to be within ±90◦ of the previous θ value, and

if necessary, the model is rotated 180◦ to be within 90◦ of

the time-averaged motion direction vector.

b) Optimizing dL and dR: Next, the arm distances are

adjusted. To produce smoother transitions between steps, the

arm distances are not immediately set to optimal values at

every time step. Rather, models are generated for single-step

increases and decreases of arm distance, and each arm is set

to the length that minimizes ǫj .

IV. EXPERIMENT

We verified the performance of our system using data

taken in the lobby of the NICT building, near our laboratory

at ATR, shown in Figure 5. Experimental subjects were

instructed to walk through the lobby several times under a

number of different conditions, e.g. individually, in groups,

wandering aimlessly, walking purposefully, making U-turns,

and stopping to ask for directions.

Raw data from a network of laser range finders monitoring

this area was recorded for each trial, which we processed

Fig. 5. Arrangement of laser scanners in experiment room. The solid black
line shows the limit of the sensor range. The gray area indicates area covered
by two or more sensors.

offline to determine human positions. In this experiment, no

real-time tracking was performed.

A. Setup and Procedure

The area of interest in our experimental environment was a

space within the lobby roughly 19 meters long and 8 meters

wide. We used six SICK LMS-200 laser scanners, set to scan

an angular area of 180◦ at a resolution of 0.5◦, covering a

radial distance of 8 meters with a nominal system error of ±
20 mm, providing readings of 361 data points every 26 ms.

These were placed around the periphery of the experimental

area, as illustrated in Figure 5. This arrangement was chosen

such that every point within the area of interest would be

covered by at least two sensors, which is important for

reducing occlusions.

The sensors were mounted at a uniform height of 90cm,

slightly above waist-level for most subjects. Tables, benches,

and a small mobile robot were also placed within the walking

area, but all of these were below 90cm and thus not visible

to the laser scanners.

Twelve adults participated as subjects in this experiment,

although at any given time only a subset of the group was

walking within the sensor area. Six trials were conducted,

and a total of 172 minutes of raw sensor data was collected.

B. Results

Two aspects of the results of this experiment will be

considered here. The first is the accuracy of our method in

tracking the subjects’ motions, and the second is the ability

to interpret this data in terms of actual body language and

behavior.

1) Tracking Individuals: Quantifying the accuracy of this

tracking technique is challenging due to the lack of more

precise measurement techniques to establish a ground truth

for evaluation. A side-by-side visual comparison of the raw

data with the model-based estimate is perhaps the most

effective indicator of the tracking accuracy.

Figure 6 shows raw data from five frames taken during

the course of a single stride, and compares them with the
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Fig. 6. Example of arm and torso movement during a single stride. Top:
Five frames of raw data from laser scanners taken at 320ms intervals.
Bottom: Corresponding human shape model positions for each frame.

model-based estimates for those time frames. Note that the

swinging of the arm is clearly visible from the data, and that

the model follows this movement closely.

Another indicator of the tracking accuracy of our tech-

nique is the resolution of movement that is visible over

time. Figure 7 shows a sample path walked by one of the

subjects during our experiment. The variations in θ due to

the swinging of the arms and torso with each stride are quite

clearly visible, with little noise present. The more subtle

change in angle as the subject walks around a curving path

is also quite clearly visible from the data.

These tracking results were then visually compared with

video recorded during the experiment. The subjects’ arm-

swinging motions were observed to match with the data.

The subject’s torso rotations were not as exaggerated as the

variations of θ in our model, which suggests the possibility

that modeling the motion of the arms during walking may

offer a better estimate of torso orientation.

Interestingly, our tracking results for this trial indicated an

asymmetry of motion, with one arm moving much more than

the other. Inspection of the video revealed that this was not

a tracking error at all, but an idiosyncrasy of the subject’s

walking style, an observation which raises the question

of whether observation of patterns in walking movement

tracked by this model may reveal other information as well,

such as aspects of personality or mood.

2) Observing Interactions: In addition to the model’s

tracking accuracy, it is important to consider what informa-

tion can be observed regarding groups of people in social

situations.

Figure 8 shows three scenes from our experiment. In the

top scene, two subjects are seen walking together. The model

correctly shows that they are walking side-by-side, facing

slightly towards each other.

In the center scene, one of the two subjects is asking a

third subject for directions. The model clearly shows the

social situation, in which Subjects A and B are focusing

their attention on subject C.

The bottom scene illustrates the tracking of a group of

subjects. Again, the group dynamic is apparent, in that all

of the subjects are listening to instructions from Subject A.

Fig. 7. Body angle tracking during 20 seconds of walking motion. Top:
Body position captures along the walking path. Bottom: Observed body
angle variations (in room-centric coordinates). The periodic oscillations are
due to natural arm-swinging motion during each stride.

(Note that the model is unable to correctly determine the

direction of Subject A because he is sitting and holding his

arms in an unusual position.)

All three of these examples illustrate information that

could not have been determined from purely location-based

tracking data.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this paper we have presented a novel human-tracking

technique using adaptive shape modeling to determine the

position and pose of a person based on a set of laser range

scanner observations.

The proposed method uses particle filters and a parametric

human shape model. The likelihood model used for the

particle filter is composed of two components: one based on

an evaluation of the possibility of occupancy based on sensor

coverage, and one based on minimizing the error between

observed body contours and the shape of the human model.

The shape model is then updated after each time step to fit

the observed data as closely as possible.

Our technique provides not only position, but also pose

and body orientation information which can be useful for

inferring meaning in a social context, such as determining

607



Fig. 8. Scenes from the experiment.

the direction of a person’s attention or the social relationship

between two people walking together.

We have demonstrated with real experimental data that

the proposed technique is able to very closely track the

movements of several subjects simultaneously, and we have

shown that the information this method provides can help in

evaluating social situations.

B. Future Work

The idea of extracting social contextual information from

movement and positioning data is a powerful one. In this

paper, the effectiveness of our proposed tracking method

has been demonstrated in offline processing of experimental

data. An important next step is the implementation of this

algorithm within a real-time tracking system. To this end,

a variety of techniques are available for improving the

performance of particle filters in general ([12], [13], [14],

[15], [16]), and several optimizations are being implemented

for our algorithm itself.

Other refinements of this approach, such as using an

elliptical torso model or varying the torso and arm radii

may produce better tracking accuracy. Perhaps the motion

model or parameter adaptation rules can be improved based

on patterns in walking style. In addition, the parameter θ

is currently a rather abstract quantity. An analysis of the

relationship between arm swinging, walking speed, and body

orientation would enable a more direct estimation of facing

direction to be derived from the variation in θ over time.

This technology opens up many interesting possibilities for

human-robot interaction research. An investigation into the

subtleties of meaning encoded in leg stance, torso orientation,

and head direction would provide useful insights into how

to determine direction of attention. Perhaps differences in

arm movement during walking or torso movements while

standing can yield information about emotional state or

intention. A closer examination of torso orientation during

a variety of social interactions may also yield insights into

understanding nuances of group dynamics, another field

which is important to the development of interactive social

robots.

VI. ACKNOWLEDGMENTS

This study was performed through Special Coordination

Funds for Promoting Science and Technology of the Ministry

of Education, Culture, Sports, Science and Technology, the

Japanese Government.

REFERENCES

[1] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo local-
ization for mobile robots,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA 1999). ICRA, May
1999.

[2] M. Montemerlo, W. Whittaker, and S. Thrun, “Conditional particle
filters for simultaneous mobile robot localization and people-tracking,”
in Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA 2002). Washington, DC: ICRA, 2002.
[3] S. Thrun, “Particle filters in robotics,” in Proceedings of the 17th

Annual Conference on Uncertainty in AI (UAI), 2002.
[4] A. Brooks and S. Williams, “Tracking people with networks of

heterogeneous sensors,” in Proc. Australian Conf. on Robotics and

Automation (ACRA 2003), Brisbane QLD, Australia, Dec.1–3 2003.
[5] D. Schulz, W. Burgard, D. Fox, and A. B. Cremens, “People track-

ing with mobile robots using sample-based joint probabilistic data
association filters,” International Journal of Robotics Research (IJRR),
vol. 22, no. 2, pp. 99–116, 2003.

[6] A. Morate, “People detecting and tracking using laser and vision,”
Master’s thesis, Royal Institute of Technology, Stockholm, Sweden,
2005.

[7] A. Almeida, J. Almeida, and R. Araujo, “Real-time tracking of moving
objects using particle filters,” in Proceedings of the IEEE International

Symposium on Industrial Electronics (ISIE 2005), Dubrovnik, Croatia,
Jun. 2005.

[8] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2005.

[9] M. Gelgon, P. Bouthemy, and J.-P. L. Cadre, “Recovery of the
trajectories of multiple moving objects in an image sequence with
a pmht approach,” Image and Vision Computing, vol. 23, pp. 19–31,
2005.

[10] S. Coradeschi and A. Saffiotti, “An introduction to the anchoring
problem,” Robotics and Autonomous Systems, vol. 43(2-3), 2003.

[11] A. Bruce and G. Gordon, “Better motion prediction for people-
tracking,” in Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA 2004), New Orleans, LA, USA, 2004.
[12] D. Fox, “Kld-sampling: Adaptive particle filters,” in Advances in

Neural Information Processing Systems 14. MIT Press, 2001.
[13] A. Doucet, N. de Freitas, K. Murphy, and S. Russell, “Rao-

blackwellised particle filtering for dynamic bayesian networks,” in The

16th Annual Conference on Uncertainty in Artificial Intelligence, San

Francisco, CA. Morgan Kaufmann Publishers, 2000, pp. 176–183.
[14] A. Soto, “Self adaptive particle filter.” in IJCAI, L. P. Kaelbling and

A. Saffiotti, Eds. Professional Book Center, 2005, pp. 1398–1406.
[15] K. Choo and D. Fleet, “People tracking using hybrid monte carlo

filtering,” in Proc. of the IEEE International Conference on Computer

Vision (ICCV 2001), 2001, pp. 321–328.
[16] J. F. G. de Freitas, M. Niranjan, A. Gee, and A. Doucet, “Sequential

monte carlo methods for optimisation of neural network models,”
Cambridge University Engineering Department, Cambridge, England,
Technical Report TR-328, Nov. 1998.

608


