
  

 

Abstract— In HRI research, game simulations and 

teleoperation interfaces have been used as tools for collecting 

example behaviors which can be used for creating robot 

interaction logic. We believe that by using sensor networks and 

wearable devices it will be possible to use observations of live 

human-human interactions to create even more humanlike robot 

behavior in a scalable way. We present here a fully-automated 

method for reproducing speech and locomotion behaviors 

observed from natural human-human social interactions in a 

robot through machine learning. The proposed method includes 

techniques for representing the speech and locomotion observed 

in training interactions, using clustering to identify typical 

behavior elements and identifying spatial formations using 

established HRI proxemics models. Behavior logic is learned 

based on discretized actions captured from the sensor data 

stream, using a naïve Bayesian classifier, and we propose ways 

to generate stable robot behaviors from noisy tracking and 

speech recognition inputs. We show an example of how our 

technique can train a robot to play the role of a shop clerk in a 

simple camera shop scenario. 

I. INTRODUCTION 

Machine learning has been applied to several elements of 
HRI, e.g. to mimic gestures and movements [1] or to learn how 
to direct gaze in response to gestural cues [2]. So far, little 
effort has been made towards using machine learning for the 
overall generation of robot motions and spoken utterances in a 
conversational interaction. Yet, many of the challenges posed 
by conversational interaction resemble the kinds of problems 
where machine learning is typically applied, i.e., decision-
making under uncertainty in a high-dimensional space. In 
particular, unconstrained speech recognition is highly noisy (a 
problem not faced by chatbots), and there can be a lot of 
natural variation between semantically-similar speech or 
motion behaviors conducted by different individuals.  

For dialogue systems to be useful and robust, they often 
require tens of thousands of utterance rules to be created. To 
minimize design effort, it would be ideal to train such systems 
from human-human interaction data, rather than manually 
authoring the rules. We have been researching ways to 
automate the collection of human-human interaction data, and 
to use machine learning to characterize the elements of those 
interactions and reproduce the observed human behaviors. 

Some work has investigated learning-by-imitation 
approaches for reproducing free-form human actions in the 
context of video games, and this work is conceptually similar 

in some ways to the “restaurant game” work of Orkin et al. [3] 
and the “Crowdsourcing HRI” work of Breazeal et al. [4]. 

In this paper we will present some of the ways that we have 
applied machine learning techniques to the problem space of 
reproducing social interactions based on data collected by 
sensors, such as those shown in Fig. 1. Much of the work we 
present here is based on our previous paper from RO-MAN 
2014 [5], and a journal paper documenting an improved 
version of our system is currently under review, so this paper 
will focus on providing a high-level view of our approach, 
presenting transcripts of example interactions, and sharing 
some of our challenges and successes in this process. 

 

    
Figure 1. Sensors used in this study. Left: ceiling-mounted Kinect sensors for 

position tracking. Right: capturing speech data with smartphones. 

II. SCENARIO AND OVERVIEW 

Our overall strategy was to use a purely data-driven 
approach for generating both robot behaviors and the rules 
which trigger them. Although it may seem that for simple 
scenarios, better results might be attained by hand-coding 
robot behaviors, the principle of keeping the process purely 
data-driven is important for scalability of the technique. 

A. Scenario 

The scenario we used for this study was a customer-
shopkeeper interaction in a camera shop, the objective being 
to train the robot to reproduce the actions of the shopkeeper. 
This scenario presented many opportunities for movement to 
different locations, as well as conversational content that 
depended on the location context.  For example, the answer to 
“how much does this camera cost?” is different depending on 
which camera the customer is looking at. 

B. Data Collection 

To perform learning from interactions in real-world 
environments such as an actual retail shop, it would be 
desirable to capture behavior data using only passive sensing 
techniques, so as to interfere as little as possible with the 
natural interactions. To this end, we used a position tracking 
system based on ceiling-mounted Kinect sensors to capture 
people’s positions and movement [6]. However, since accurate 
speech recognition is not yet easily achieved using 
environmentally-mounted microphones, we used handheld 
smartphones to capture their speech (Fig. 1). Participants 
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tapped the smartphone display before and after speaking, and 
their speech was recognized using the Google speech API. 

With this system, we recorded 178 example human-human 
interactions to be used as training data. Live data from the 
same sensor system was later used for conducting online 
interactions with the robot. Such use of a sensor network to 
augment a robot’s on-board sensing is common in “Network 
Robot System” applications for social robotics [7]. 

C. Learning Strategy 

Our basic learning strategy can be summarized as follows: 

1. Discretize actions of shopkeeper and customer in time. 

2. Use abstraction techniques to represent customer 
actions as a feature vector. 

3. Represent shopkeeper actions as discrete executable 
robot actions. 

4. Train predictor with customer-shopkeeper action pairs. 

5. In online system, call predictor whenever customer 
action is detected, and execute predicted robot action. 

The following sections will elaborate on these steps and 
introduce the techniques we used for processing the noisy 
sensor data into representations that are useful for machine 
learning and robot behavior generation.  

III. ABSTRACTION OF FEATURES 

A. Spatial 

Rather than using raw (𝑥, 𝑦) positions for representing 
spatial location, we identified a discrete set of typical stopping 
locations in the room. To do this, we segmented trajectories 
from the data collection by using velocity thresholding to 
separate walking from stopped segments.  

We then used unsupervised k-means clustering to group 
the stopped segments into typical stopping locations for each 
person (see Fig. 2), and we represented each moving segment 
as a transition between two stopping locations. For the most 
part, these points corresponded to known objects in the room 
(the door, the service counter, and three cameras of different 
brands: Sony, Panasonic, and Canon), so in this paper we refer 
to them by those labels. As an example of a typical movement 

action, we might see the customer moving from the door 
location to the canon location. 

The discretized locations of the customer and shopkeeper, 
and a state variable representing whether or not they were 
moving, were combined into a feature vector 𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙 . 

B. Formations 

Next, we modeled each interaction as consisting of a 
sequence of stable interaction states which last for several 
turns in a dialogue, recognizable by distinct spatial formations 
such as talking face-to-face or presenting a product. The 
modeling of interaction states helps to generate locomotion in 
a stable way, to specify robot proxemics behavior at a detailed 
level, and to provide context for more robust behavior 
prediction. 

We identified three interaction states related to existing 
HRI models: present object, based on the work of Yamaoka et 
al. [8], face-to-face, based on interpersonal distance defined by 
Hall [9], and waiting, inspired by the modeling of socially-
appropriate waiting behavior by Kitade et al. [10]. Examples 
of these states are shown in Fig. 3. Discrete variables 
representing the interaction state and the target location, if any, 
were added to a feature vector 𝐹𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛. 

C. Speech 

To represent speech as a vector for use in machine 
learning, we used several common speech-processing 
techniques, including removal of stopwords, a Porter stemmer, 
the generation of n-grams to capture word sequence, 
generation of a term frequency-inverse document frequency 
(TF-IDF) matrix, and Latent Semantic Analysis (LSA), a 
dimensionality-reduction technique for text similar to 
principal components analysis. 

After this processing, each captured utterance was 
represented as a vector of approximately 350 dimensions. We 
designated this vector as 𝐹𝑠𝑝𝑒𝑒𝑐ℎ . 

IV. DEFINING ROBOT ACTIONS 

For each observed shopkeeper action, it was necessary to 
create a corresponding robot action, incorporating speech and 
locomotion. As an example, consider the case where the 
shopkeeper was observed to say, “It comes in red and silver,” 
while presenting the Sony camera to the customer. 

A. Locomotion 

Locomotion behaviors were defined in terms of achieving 
a target interaction state.  Thus, in the above example, the 
target interaction state would be present product (an 
interaction state corresponding to a spatial formation) at sony 
(a location known based on the clustered stopping locations).  

 
Figure 2. Typical stopping location clusters for the customer. Asterisks show 

cluster centers, and squares show the locations of known objects. 

   
Figure 3. Spatial formations detected in this study. From left to right, they 

are waiting, face-to-face, and present object. 



  

To execute this action, the robot must first determine 
whether it is in the target state. If not, it moves towards the 
destination most likely to achieve that state, using the 
proxemics model for present product and the projected 
position of the customer to choose a target location to move to 
in order to achieve present product at sony.  

B. Speech 

In order to reproduce speech behaviors, we faced the 
difficult problem that speech recognition results were 
significantly corrupted by speech recognition errors.  

An analysis of 400 utterances from the training interactions 
showed that 53% were correctly recognized, 30% had minor 
errors, e.g., “can it should video” rather than “can it shoot 
video,” and 17% were complete nonsense, e.g. “is the lens 
include North Florida.” 

Since nearly half of the captured utterances contained 
errors, we needed some strategy to minimize the impact of 
these errors on the speech generated by the robot. We clustered 
the shopkeeper’s speech utterances using dynamic hierarchical 
clustering [11] to group the observed shopkeeper utterances 
into clusters representing unique speech elements. 166 clusters 
were obtained from 1233 shopkeeper utterances. 

Next, we analyzed each cluster to identify the utterance 
with the greatest similarity to other utterances in that cluster, 
in order to minimize the likelihood that it contained 
recognition errors. For this step, it was important to use the 
actual text strings rather than their vectorized representations. 

Finally, we extracted a typical utterance for each cluster to 
be defined as a robot speech action, which would usually be a 
paraphrase of the actual utterance. The example above might 
map to the phrase, “We have red and silver available.” 

C. Execution 

For robot locomotion, the dynamic window approach was 
used for obstacle avoidance [12]. Speech was synthesized with 
Ximera software [13]. The robot’s gaze was always directed 
towards the customer, and idle behaviors were generated based 
on whether the robot was speaking, stopped, or moving [14]. 

V. TRAINING THE PREDICTOR 

A. Discretizing actions 

As described in Section II-C, the basic procedure of our 
learning approach was to first identify discrete action events 
for the shopkeeper and customer in the training data, and then 
to train a predictor to predict an appropriate robot (shopkeeper) 
action each time a human (customer) action was detected.  

Actions were generated whenever one person started 
moving, which we detected by velocity thresholding, or when 
someone spoke, which was detected by the system whenever 
a new utterance was output by the speech recognizer. 

B. Train classifier 

We then considered all instances where a customer action 
was followed by a shopkeeper action, as shown in Fig. 3. 
These action pairs were used to train a Naïve-Bayesian 
classifier to predict a discrete robot action based on a vector 
characterizing the customer action. 

We trained the classifier using the feature vector comprised 
of 𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙 , 𝐹𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛, and 𝐹𝑠𝑝𝑒𝑒𝑐ℎ  for each customer action as 

a training input, and we used the subsequent robot action 
corresponding to the shopkeeper action as its training class.  

The naïve-Bayesian classifier is a generative classification 
technique which uses the formula below to classify an instance 
that consists of a set of feature-value pairs. 

𝑎𝑁𝐵 = arg max
𝑐𝑗∈𝐶

𝑃(𝑎𝑗) ∏ 𝑃(𝑓𝑖 = 𝑣𝑖|𝑎𝑗)𝑖   

𝑎𝑗, denotes a robot action, and 𝑓𝑖 denotes a feature in the 

feature vector. The naïve-Bayesian classifier picks a robot 
action, 𝑎𝑁𝐵, that maximizes the probability of being classified 
to the robot action given the value 𝑣𝑖 for each feature 𝑓𝑖.  

Each feature has different dimensionality. Thus, the model 
can be extended to: 

𝑣𝑖 =  {𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑚} 

𝑎𝑁𝐵 = arg max
𝑐𝑗∈𝐶

𝑃(𝑎𝑗) ∏ (∏ 𝑃(𝑡𝑖𝑘  𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑓𝑖|𝑎𝑗)

𝑘

)

𝑤𝑖

𝑖

 

We would like to give higher priority to values in the 
features that are more discriminative in classifying robot 
action. Information gain tells us how important a given feature 
in the joint state vector is. Therefore a weighting factor 𝑤𝑖  is 
applied for each feature 𝑓𝑖, calculated as the information gain 
ratio, that is, the ratio between information gain and intrinsic 
value for each feature over all training examples. 

VI. EXAMPLE INTERACTION 

To demonstrate the kinds of interactions that the robot can 
reproduce using this technique, we provide the transcripts of 
two interactions between recruited participants and our robot 
in Tables I and II. These interactions illustrate several 
important capabilities of our system.  

A. Successes 

In this scenario, the primary function of the robot is to 
provide information about the various features of the cameras, 
and as these examples show, the robot was able to correctly 
answer questions about features such as price, color, weight, 
storage capacity, and battery life of three different cameras.  

 
Figure 4. Correspondence of action pairs. 



  

 

TABLE I: TRANSCRIPT OF EXAMPLE INTERACTION 1 
   

(1-1) 

 

(Scene 1-1) 

Robot is standing at service counter. 

Customer enters and approaches panasonic. 

 

(Scene 1-2) 

Robot begins approaching panasonic. 

Robot: hi is there anything I can help you with today 

 

Customer: Ah yes, this camera, uh, how's the battery life? 

 

(Scene 1-3) 

Robot (arriving at panasonic): long battery life of 9 hours. 

 

Customer: Ah I see. And... the weight? 

 

Robot: this camera is 150 grams and it can fit in your pocket 

 

Customer: Oh, wow. That's very convenient. Thank you. 

 

Customer turns away and begins walking towards canon. 

 

Robot: OK 

Robot drives back to service counter. 

 

Customer (at canon): How about this one? How's the storage memory? 

 

(Scene 1-4) 

Robot begins moving towards canon. 

 

Robot (while moving): yes it can store 10000 photos 

 

Customer: hmm, how much is it? 

 

(Scene 1-5) 

Robot arrives at canon. 

Robot: this is $400 

 

Customer: Ok. What colors does it come in? 

 

Robot: intense grey red and brown colors 

 

Customer: Ah ok, well, actually... 

Customer walks back to panasonic. 

 

(Scene 1-6) 

Robot turns and follows customer to panasonic. 

Customer: What's the optimal zoom on this camera? 

 

Robot arrives at panasonic and turns toward the customer. 

Robot: 5x optical zoom 

 

Customer: Oh, ok. Thank you. 

Customer turns to leave. 

 

(Scene 1-7) 

Robot: no problem 

Robot returns to service counter.  
 

(1-2) 

 

(1-3) 

 

(1-4) 

 

(1-5) 

 

(1-6) 

 

(1-7) 

 

 



  

  

TABLE I: TRANSCRIPT OF EXAMPLE INTERACTION 2 
   

(2-1) 

 

(Scene 2-1) 

 

Robot is standing at service counter. 

Customer enters and approaches canon. 

 

Robot: hi, my I help you 

 

Customer: Yes, I'm looking for a camera with interchangeable lenses. 

 

(Scene 2-2) 

 

Robot begins moving towards sony. Customer follows. 

 

Robot: Over here we have my favorite which is the Sony NEX 5 

which is a mini SLR and has 28 replaceable lens. 

 

Customer: 28 replaceable lens? 

 

(Scene 2-3) 

 

Robot (arriving at sony): This is $600. 

 

Customer: Do you have a cheaper one? 

 

(Scene 2-4) 

 

Robot turns and begins moving towards canon. Customer follows.  

 

Robot: (while moving) Rite Aid this is because the mirrorless camera 

is actually lighter. This is a little bit heavier but has good performance 

in low light. 

 

(Scene 2-5) 

 

Customer (as they arrive at canon): Oh, really? 

 

Robot: Yes. 

 

(Scene 2-6) 

 

Customer turns to face towards sony. 

 

Customer: I think the Sony camera is very good. 

 

Robot: 400 dollars. 

 

Customer: (laughs) 

 

(Scene 2-7) 

 

Customer: Thank you. See you. Goodbye. 

 

Customer turns to leave. 

 

Robot: No problem. 

 

Robot returns to service counter.  
 

(2-2) 

 

(2-3) 

 

(2-4) 

 

(2-5) 

 

(2-6) 

 

(2-7) 

 

 



  

The robot responds not only to speech, but also to motion 
cues from the customer. In Scene 1-1, when the customer 
enters and approaches panasonic, the robot responds by 
offering to help and approaching the same camera. Later, in 
Scene 1-5, she walks from canon to panasonic, and the robot 
follows her to the new camera. 

These interactions also illustrate how the robot is able to 
perform movement and speech at the same time. In Scene 1-4, 
the customer asked a question to the robot while it was at the 
service counter, and it predicted that it should provide the 
answer and establish the present product formation at the 
canon location. Thus, it spoke the predicted utterance, while at 
the same time driving to that target location. Scenes 2-2 and 2-
4, show other examples of the robot speaking while moving. 

The system is also robust to phrasing and recognition 
errors. For example, in Scene 1-6, the customer misspoke and 
said “optimal zoom” rather than “optical zoom.” Because the 
system was trained from noisy speech recognition data, it is 
quite robust to small errors like this, and it was able to correctly 
answer the question regardless of that error. 

B. Challenges and Limitations 

We considered the robot’s performance in these example 
interactions to be quite acceptable overall. However, it is 
important to consider the challenges and limitations of the 
system and of the approach in general. 

First, some minor phrasing issues can be seen in the 
example interactions. In Scene 1-4, the robot says “yes it can 
store 10000 photos,” where the word “yes” would not have 
been warranted.  Likewise, in Scene 1-6, the robot said “5x 
optical zoom,” whereas a human probably would have said 
something more grammatically complete, like “it has 5x 
optical zoom”. Several very minor errors like this occurred 
because our system has no knowledge of semantic meaning or 
grammatical structure. 

The robot sometimes spoke strange utterances because of 
speech recognition errors. In Scene 1-5, the robot says “intense 
gray, red, and brown colors,” a phrase derived from a speech 
recognition error in the training data when the shopkeeper had 
said, “it has gray, red, and brown colors.” Similarly, the phrase 
“my I help you” in Scene 2-1 was an error in the recognition 
of “may I help you”, and “Rite Aid” in Scene 2-4 came from 
incorrect recognition of “Right, and” in the training data. 
Interestingly, most of these mistakes went unnoticed by the 
participants and even the experimenters.  We attribute this to 
the fact that many speech recognition errors resulted in words 
that were phonetically similar to the correct ones, and people 
unconsciously corrected the errors. 

One limitation of this approach is the fact that it contains 
no representation of history, so for example we sometimes 
observed situations where the customer would approach one 
camera, the robot would say, “may I help you,” then the 
customer would say “no, thanks,” and move to another camera. 
Frequently the robot would then repeat, “may I help you?” 
because the predictor did not consider interaction history.  

Finally, we have shown this technique to be effective in the 
kinds of interactions where the robot must directly respond to 
a human’s actions. We believe that this will cover a wide range 
of human-robot interaction scenarios, but it might not be 

expected to perform so well in contexts where the robot needs 
to be more proactive. 

VII. CONCLUSIONS 

In this study, we showed a proof of concept that a purely 
data-driven approach can be used to reproduce social 
interactive behaviors with a robot based on sensor 
observations of human-human interactions. 

Overall, we were quite satisfied with the performance of 
the system, and we think that the scalability of a data-driven 
approach gives it the potential to transform the way social 
behavior design is conducted in HRI. Once passive collection 
of interaction data becomes practical, even a single sensor 
network installation could provide enormous amounts of 
example interaction data over time, an invaluable resource for 
the collection and modeling of social behavior. We believe that 
with today’s trends towards big-data systems and cloud 
robotics, techniques like this will become essential methods 
for generating robot behaviors in the future. 
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