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Abstract—When robots serve in such urban areas as shopping 

malls, they will often be required to approach people in order to 
initiate service. This paper presents a technique for human-robot 
interaction that enables a robot to approach people who are 
passing through an environment. For successful approach, our 
proposed planner first searches for a target person at public 
distance zones with anticipating his/her future position and 
behavior. It chooses a person who does not seem busy and can be 
reached from a frontal direction. Once the robot successfully 
approaches the person within the social distance zone, it identifies 
the person’s reaction and provides a timely response by 
coordinating its body orientation. The system was tested in a 
shopping mall and compared with a simple approaching method. 
The result demonstrates a significant improvement in 
approaching performance; the simple method was only 35.1% 
successful, whereas the proposed technique showed a success rate 
of 55.9%. 
 

Index Terms—Human-Robot Interaction, Approaching people, 
Anticipating human behaviors 
 

I. INTRODUCTION  

obots have started to move from laboratories to real 
environments, where they interact with ordinary people 

who spontaneously interact with them. Robots have been tested 
in guiding roles in museums [2, 3, 4] and supermarkets [5]. 
Social robots such as receptionists [6] and tutors [7] have been 
developed to interact like humans, communicating socially 
with people.  
    We consider that “initiating interaction” is one of the 
fundamental capabilities of human-robot interaction for such 
robots. That is, the initiating interaction would be commonly 
useful among these robots, while each of them would engage in 
task-specific interaction for each individual application after 
initiation. Although many robots are equipped with the 
capability to invite people in interaction [8, 9, 10, 11, 12], these 
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robots only passively wait for people to approach them. 
Alternatively, a “mobile” robot can approach people (Fig. 1) 

to initiate interaction. This way of providing services is more 
proactive than waiting, since it enables robots to find and assist 
people who have potential needs. For instance, imagine a senior 
citizen who is lost in a mall. If a robot were placed in the mall to 
provide route directions, it could wait to be approached for 
help; but people might not know what the robot can do, or they 
might hesitate to ask for help. It would be more appropriate for 
the robot to approach and offer help. Our study presents a 
method to deal with this novel way of initiating interaction. 

A robot’s capability to approach people is important for a 
number of applications. We believe that one promising 
application is an invitation service; a robot offers shopping 
information and invites people to visit shops, while giving 
people the opportunity to interact with it, since robots remain 
very novel. 

II. RELATED WORKS 

Since proactive approaching from a robot is novel, no previous 
study has reported an integrated method to address its whole 
process, although each part of the interaction has been 
addressed to some degree. In this section, we report related 
works on some aspects of proactive approaching. 

A. Interaction and Distance 

People engage in different types of interaction depending on 
the distance separating them. Hall classified human interactions 
into four categories based on distance: “public distance” 
(typically >3.5 m), typically used for situations in which people 
are speaking to a group, “social distance” (typically between 
1.2 and 3.5 m), characterized by situations in which people talk 
to each other for the first time, “personal distance” (typically  
between 45 cm and 1.2 m), used for interactions with familiar 
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(a) Robot approached a man looking at a 
map 

(b) Robot started to speak 

(c) Turned away from robot (d) Left without glancing at it 
Fig. 1.  What’s wrong?  Unaware failure in approach  
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people, and “intimate distance” (< 45 cm), used for embracing, 
touching, or whispering [13]. Our approach is related to 
interaction at both public and social distances. The robot needs 
to find a person with whom to talk, to approach that person 
from a public distance, and to initiate conversation from a 
social distance. 

B. Finding a Person for Interaction  

Many previous studies exist for finding and tracking people. 
Vision as well as distance sensors on robots have been 
successfully used, even in crowded exhibits [14]. Moreover, 
researchers have started to use sensors embedded in 
environments [15, 16, 17] that enable a robot to recognize 
people from a distance. 

After finding people, the robot needs to identify a person 
with whom to interact. There are previous studies about human 
behaviors related to this. For example, Yamazaki et al. 
analyzed how elderly people and caregivers start conversations 
and found that to identify elderly people who require help, a 
caregiver nonverbally displays availability with body 
orientation, head direction, and gaze [18]. Fogarty et al. 
analyzed human interruptibility in an office environment and 
demonstrated that even simple silence detectors could 
significantly estimate interruptibility [19]. 

Other studies involve human-robot interaction, i.e., 
observing people’s behavior directed toward a robot. For 
example, Michalowski et al. classified the space around a robot 
to distinguish such human levels of engagement as interacting 
and looking [11]. Bergström et al. classified people’s motion 
toward a robot and categorized people into four categories: 
interested, indecisive, hesitating, and not interested [12]. Tasaki 
et al. developed a robot that chooses a target person based on 
distance [20]. Finke et al. developed a robot that uses a time 
series of human-robot distances to estimate which of the people 
passing in front of it are interested in interaction [21]. All of 
these previous studies addressed people's behavior as those 
who show interest in interacting with a robot, expressed within 
a few meters of a robot. However, our problem, making a robot 
approach pedestrians, requires very different perception of 
people's motion. It needs to observe people’s walking behavior, 
such as their way of walking, to estimate the possibility of 
having a conversation. 

C. Interaction at Public Distance 

A public distance is too far for people to talk, even though 
they recognize each other’s presence. At such a distance, 
interaction is mainly achieved by changing body position and 
orientation. Sisbot et al. developed a path-planning algorithm 
that considers people’s positions and orientation to avoid 
disturbances [22]. Pacchierotti et al. studied passing behavior 
and developed a robot that waits to make room for a passing 
person [23]. Gockley et al. found the merits of a 
direction-following strategy for when a robot is following a 
person [24]. 

These robots only use people’s current position; however, 
since human-robot interaction is dynamic, prediction and 
anticipation are crucial. Hoffman and Breazeal demonstrated 

the importance of anticipation in a collaborative work context 
[25]. However, few studies have addressed the anticipation of 
people’s positions. Bennewitz et al. utilized such a prediction of 
position [26], but only for helping a robot avoid people, not for 
enabling interaction with them. In a previous study, we 
anticipated people’s positions for letting a robot approach them 
and demonstrated the importance of anticipating positions [27]; 
but that work lacked a path-planning process, which is 
important for notifying the target person of the robot’s 
presence. 

D. Initiating Conversation at Social Distances 

After entering a social distance, a robot initiates a 
conversation with its target. People usually start conversations 
with greetings. Goffman suggested that social rules exist for 
accepting/refusing approaches, including eye-contact, which is 
a ritual that mutually confirms the start of a conversation [28]. 
Kendon suggested that friends exchange greetings twice, first 
nonverbally at a far distance and again at a close distance by 
smiling [29]. 

Several previous HRI studies have addressed the greeting 
process. The importance of greeting behavior is well 
highlighted in studies in human-robot interaction [6, 31, 39]. 
Dautenhahn et al. studied the comfortable direction for an 
approach [9] as well as the distance for talking [30]. Yamamoto 
and Watanabe developed a robot that performs a natural 
greeting behavior by adjusting the timing of its gestures and 
utterances [32].  

These studies assume that the target person intends to talk 
with the robot. However, in reality people are often indecisive 
about whether to talk when they see a robot for the first time. 
Studies have been conducted on first-time-meeting situations 
and making robots nonverbally display a welcoming attitude 
[11, 12]; but these passive robots only waited for a person to 
engage in conversation. Although such a passive attitude is fine 
for some situations, many situations require a robot to engage in 
an active approach. Our study aims to allow a robot to actively 
approach a person to initiate conversation. 

“An approach from a robot” is not an easy problem since the 
robot’s approach needs to be acknowledged nonverbally in 
advance. Otherwise, the person being approached might not 
recognize that the robot is approaching or might perceive the 
robot’s interruption as impolite. Humans do this well with eye 
gaze [28, 29], but in a real environment it is too difficult for a 
robot to recognize human gaze. Instead, we use the body 
orientation of the target and the robot for nonverbal interaction. 

E. Contingency Detection 

The way to start interaction involves the process of 
identifying contingency, seeking whether the target person 
reacts in a contingent way toward initiating conversation. In 
other interaction contexts, the detection of contingency has 
been studied. Movellan et al. proposed that information 
maximization is the basis of contingent behavior [34]. Methods 
for contingency detection have been proposed [35][36]. While 
these studies aim to find a method to detect contingency in 
generic ways, our study addresses it in a specific but important 
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context: the initiation of interaction. 

III. STUDY SETTINGS 

This section introduces our environment, a shopping mall, as 
well as the hardware of the robot system and the robot's task. 

A. Environment 

Our study focuses on the initiation of interaction. We aimed 
to conduct our study in an environment where people could 
spontaneously decide whether to interact with the robot. Thus, 
we conducted it in a real social environment.  

The robot was placed in a shopping mall located between a 
popular amusement park, Universal Studios Japan, and a train 
station. The primary visitors to the mall were groups of young 
people, couples, and families with children. The robot moved 
within a 20 m section of a corridor (Fig. 1). Clothing and 
accessories shops were on one side and an open balcony on the 
other. 

B. Task 

The robot’s task was advertising shops. The robot was 
designed to approach visitors and to recommend one of the 24 
shops in the mall by providing such shop information as, “It’s 
really hot today, how about an iced coffee at Seattle’s Best 
Coffee?” or “It’s really hot today, how about some ice cream?” 
and pointing at the shop. 

Within the scope of this study, we focused on “initiating 
interaction” in which the robot proactively approach to people. 
The approaching is, as to be revealed in this study, a process 
that involves planning as well as exchange of non-verbal 
behavior. Beyond the phase of initiating interaction, we limited 
ourselves to only include minimum interaction: there is 
recommendation behavior exhibited which was greatly 
simplified one: the robot did not engage in spoken dialog and 
kept randomly recommending shops one by one until the visitor 
walked away.  

Visitors to the shopping mall freely interacted with the robot 
and could quit the interaction anytime. For safety, our staff 
monitored the robot from a distant place, not visible to visitors; 
thus, from the visitors view, the robot seemed to move around 
and approach them without assistance from human 
experimenters. When the robot was neither approaching nor 
talking, it roamed along a pre-defined route. 

C. Hardware and Infrastructure 

1) Robot 
We used Robovie, a communication robot, which is 

characterized by its human-like physical expressions. It is 120 
cm high, 40 cm in diameter, and is equipped with basic 
computation resources as well as WiFi communication. Its 
locomotion platform is a Pioneer 3 DX. We set it to move at a 
velocity of 300 mm/sec (approx. 1.0 km/h) forward and 60 
degree/sec for turns. The platform can navigate the robot faster 
than these parameters (up to 1600 mm/sec), but we chose a 
lower velocity for safety. 

2) Laser range finders 
To approach people, the robot needs to robustly recognize 

their positions and its own position, even in distant places. We 

used sensors distributed in the environment for tracking human 
and robot positions. Six SICK LMS-200 laser range finders 
were positioned around the area’s perimeter. Laser range 
finders were set to a maximum detection range of 80 m with a 
nominal precision of 1 cm, and each scanned an angular area of 
180° at a resolution of 0.5°, providing readings every 26 ms. 

3) People and robot tracking system 
These laser range finders were used for tracking people. We 

used a technique based on the algorithm described by Glas [17]. 
In this algorithm, particle filters are used for estimating 
people’s positions and velocities, and a contour-analysis 
technique estimates the direction in which a person is facing. 
This orientation angle helps determine whether the robot 
should approach a person. This system covers a 20 m x 5 m area 
and concurrently detects over 20 people’s locations. It is also 
used for localizing the robot [33]. Estimation of people's 
position and localization is performed every 30 msec. 

In this environment, the system tracked people with 5-cm 
accuracy. The localization system usually successfully tracked 
the robot as well and localized its position within 5-cm 
accuracy. On rare occasions when the robot was surrounded by 
many people trying to interact with it, the robot was not 
observable from any of the laser range finders, causing serious 
occlusions and causing the system to fail to track the robot's 
position. For such unusual failures, a human operator manually 
corrected the error and restarted the robot's navigation routine. 

IV. MODELING OF APPROACH BEHAVIOR 

Our first attempt to create a simple approach behavior was 
unsuccessful, and we present it here as motivation for 
developing the technique presented in this paper. With this 
behavior, the robot simply approached the nearest person. 

A. Simple approach behavior 

Two computation steps were performed in this approach 
technique. First, the planner must receive people's positions 
from the people and robot tracking system (Section III-C-3) 
and select a target person to approach. These two steps are 
performed every 500 ms: 

(1) Calculating distance for each person i: 
ܑܜܛܑ܌                 ൌ 	   ,|	ܚ۾	–	ܑ۾	|

where Pi is the current position of person i and Pr is the 
current position of the robot.  

(2) Choose the person (itarget) whose position is closest to the 
robot: 

ܜ܍ܚ܉ܜ                 ൌ argmin
୧
  .ݐݏ݅݀

Second, the robot executes an approach behavior. Every 30 
ms, the robot receives people's positions from the people and 
robot tracking system and actuates its locomotion platform. 
While distance ܜ܍ܚ܉ܜܑܜܛܑ܌  is greater than 3 m, it directs its 

motion direction to ܜ܍ܚ܉ܜܑ۾  and moves with its maximum 

velocity (300 mm/sec). When the distance is less than 3 m, it 
stops moving, initiates a greeting, and starts further 
conversation. 
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B. Lessons Learned 

Many people ignored the robot when it performed this 
behavior. These failures, which reflected many problems in the 
simple approach behavior, were analyzed by watching videos 
and position data and categorized into four categories: 
unreachable, unaware, unsure, and rejective. Table I 
summarizes the failure categories, which we introduce in this 
subsection and discuss how the robot can avoid them.  
 
Unreachable 

One typical failure is a case where the robot failed to get 
close enough to engage the target person. This failure happened 
because (a) the robot was slower than the target person, and/or 
(b) the robot chose a person who was leaving. 

 
Unaware 

When a person is unaware of the robot, they do not recognize 
its action as initiating conversation, even when the robot is 
speaking to them.  

Fig. 1 shows one such failure. In this case, a man was looking 
at a map on a wall when the robot spoke to him (Fig. 1(b)), but 
he wasn’t listening (Fig. 1(c)) and left without even glancing at 

the robot (Fig. 1(d)). He probably did not hear the robot because 
the mall was quite noisy. Perhaps he heard without recognizing 
that he was being addressed; he might have recognized the 
robot but simply ignored it.  

To avoid this type of failure, the robot could approach such a 
person before he stopped to look at the map; by approaching 
from a frontal direction while the person was still walking, the 
robot could more effectively make its presence known. 
(Alternatively, although this is beyond the focus of this paper, 
the robot should consider how to approach a person who is 
looking at a target object [37]). 

Figure 2 shows two women walking together (Fig. 2(a)). The 
robot started approaching one of them from the front and 
seemed to be within her sight (Fig. 2(b)). When the robot 
reached a distance to talk, it approached her right side (Fig. 
2(c)). Unfortunately, since she wasn’t looking at the robot but 
at a shop, she ignored the robot as if nothing happened and 
walked on. To avoid this type of failure, the robot needs to 
improve its notifying behavior. 

 
Unsure 

We labeled another type of failure as unsure. Sometimes, 
although people were aware of the robot, it failed to initiate 
conversation. They noticed the robot’s behavior and recognized 
its utterances. However, they did not stop since they seemed 
unsure whether the robot intended to talk to them. Some people 
even tested the robot’s reaction after its greeting, but since the 
robot was not prepared to react to such testing behaviors, it 
failed to provide an appropriate reaction. Thus, the robot failed 
to initiate conversation. 

Figure 3 shows one such failure. A woman and a man entered 
the environment (Fig. 3(a)). The robot approached and greeted 
the woman. She stopped walking and performed a kind of test 
by extending her hand to the robot’s face (Fig. 3(c)). The robot, 

TABLE II 
MODEL OF APPROACH BEHAVIOR 

Phase Robot’s behavior 
Failures to be 

moderated 

Finding an interaction 
target 

Selecting a likely 
interaction target   

Unreachable/Reje
ctive 

Approaching  target at 
public distance 

Announcing its presence 
and intention to talk 

Unaware 

Initiating conversation 
at social distance  

Nonverbally showing 
intention to interact 

Unsure/Rejective

  
(a) Robot approached a person (b) She stopped when robot started 

to speak 

 
(c) She observed robot’s reaction (d) She left when robot did not 

immediately react  
Fig. 3 Unsure failure: woman unsure whether robot intended to speak to her 
 

TABLE I 
CLASSIFICATION OF FAILURES 

Category What happened 

unreachable -  Robot did not get close to target person. 

unaware 
-  Person did not look at robot. 
-  Person did not listen to it. 

unsure 
-  Person recognized its presence and reacted (e.g., 
checked its reactions); but the robot did not respond 
correctly in time. 

rejective 
-  Person recognized its presence and its greeting 
behavior, but did not start a conversation. 

 
(a) Robot approached a woman (b) Robot seemingly in her sight but 

she paid no attention 

 
c) She didn’t see the robot while it 

approached her right side 
(d) She left 

Fig. 2  Unaware failure: a person is walking and talking to another person  
 

Approach target 
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however, did not respond, so the woman left a few seconds 
later. 

To avoid this type of failure, the robot must unambiguously 
make the target person understand that it is initiating 
conversation. Establishing contingency with the person would 
be useful (e.g., facing the person, re-orienting its body to the 
person, etc.) when the robot is going to initiate a conversation. 

 
Rejective 

Some people were not interested in conversation with the 
robot, presumably because they were too busy. These people 
immediately avoided the robot and refused to talk to it, 
although they were aware of it and knew that it was addressing 
them. We called such failures rejections. These people should 
simply be avoided. 

 

C. Modeling 

In response to the lessons learned from our failures in the 
simple approach behavior, we developed a model for more 
efficient and polite approach behavior (Table II). We propose 
an approach behavior consisting of the following sequence of 
phases: (1) finding an interaction target, (2) approaching it at a 
public distance, and (3) initiating conversation at a social 
distance. 

 
Finding an interaction target 

The first phase is “finding an interaction target.” The robot 
needs to predict how people walk and estimate who can be 
reached with its locomotion capability. It also needs to 
anticipate whether people might be willing to interact with it; 
this requirement is especially difficult, but at least it can avoid 
choosing busy people who are probably unwilling to talk. 
Approaching the target at a public distance 

The second phase is “approaching” the target at a public 
distance, where the robot announces its presence to the target at 
a public distance by approaching from the front. Here, the robot 
must predict the target’s walking course to position itself within 
his/her sight before starting the conversation. 
Initiating conversation at a social distance 

The last phase is initiating conversation at a social distance. 
Perhaps this can be done simply by such greetings as hello; 
however, greeting strangers is not easy. People are sometimes 
unaware of the robot’s utterance or do not recognize that the 
greeting is directed at them. We focused on using nonverbal 
behavior to indicate the robot’s intention to initiate a 
conversation. When the target is about to change her course, the 
robot faces her so that she can clearly recognize that the robot is 
trying to interact with her. If she stops, we assume that she is 
accepting interaction with the robot. After receiving such an 
acknowledgement, the robot starts a conversation. 

V. A ROBOT THAT APPROACHES PEOPLE 

A. Overview 

There are four techniques involved in our proposed system 
(Fig. 4). The people and robot tracking system (Section III-C-3) 

estimates the positions of people and robots using external laser 
range finders; anticipating people’s behavior (Section V.B) 
refers to a computation of the probabilities of the future 
position and future local behavior of each person. 

 
The system includes a planner that generates an approach 

plan and outputs the goal point and goal direction from the 
approach plan to the motion controller. We followed the three 
steps in Table II to implement the system, and so the planner 
supports two approaching modes. In the approaching at a 
public distance mode (Section V-C), the planner chooses a 
person to be approached from among the observed people. 
When the robot arrives within the person's social distance 
(Since Japanese social distance seems to be smaller than Hall’s 
original definition, thus we set our threshold to be 3 m), it 
transitions to the initiating conversation mode (Section V-D). 
Here, the robot observes the person's reaction and provides a 
timely response to convey the impression that it is intending to 
interact with the person. 

B. Anticipating People’s Behavior 

For anticipating people’s behavior, we used a technique 
based on the algorithm developed by Kanda et al. [27]. The 
basic idea of anticipation is that the future position and future 
local behavior of a person are likely to resemble those of other 
people with a similar motion history. For example, a person in a 
hurry may try to follow the shortest path at a high velocity, 
while a window shopper may move at a slower speed, 
following a path that passes close to shops. 

Based on the above idea, a system that anticipates future 
position and behavior involves two key processes: offline 
modeling and online execution. In offline modeling, we 

  
Fig. 4 System architecture 

Initiating 
conversation

Approaching 
at public 
distance

Public distance

Anticipating 
people’s behavior

People and robot 
tracking

Planner

Motion Controller

Social distance

Target point  and target speed

Positions
Anticipated 

position & behavior

TABLE III 
ATTRIBUTES FOR FREQUENCY DISTRIBUTION 

Attribute Partitioning Unit size Symbol 

Spatial 2d grid map 25cm x 25cm 
s id of grid 
S entire set of s 
cps center point of grid s 

Time Elapsed time 500 msec 
t value of time 
T entire set of t 

Behavior SVM  4 classes 
b value of behavior 
B entire set of b 
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construct an anticipation model by extracting typical trajectory 
patterns from the recorded data of visitors to the shopping mall. 
In the online execution phase, the system uses this anticipation 
model to calculate the probabilities of future positions and the 
behaviors for each person being observed. 

1) Offline Modeling 
The anticipation model was constructed in two steps: (1) 

extracting the typical movement patterns of the visitors at the 
shopping mall, and (2) calculating the pattern features for 
anticipation. For the first step, a clustering algorithm was 
applied to the trajectories we observed in the environment over 
19 days. It consists of 26,863 pieces of trajectory data from 
visitors who spent more than 0.5 seconds (average 21.1 
seconds) in the environment where we conducted the 
experiment. We briefly explain the clustering algorithm here, 
and further details of it can be found in previous work [27]. 

First, a person’s trajectory, which is a time series of positions 
represented in the x-y coordinates, is sampled every 500-ms 
and converted to a state chain, },,{ i

t1
i
t0

i ssS   (Fig. 5(a)). 
Spatial partitioning 

i
ts  is defined as }|{ n

i
t

i
t ApNns  , 

where An is the partition to which the point in trajectory p 
belongs. We used spatial partitioning based on a 50-cm grid. 
Second, we applied a k-means clustering algorithm. In the 
clustering, the trajectories were compared based on the physical 
distance between them at each time step using a Dynamic 
Programming (DP) matching method (widely used in many 
research domains, e.g., [38]) (Fig. 5(b)), where “insert” and 
“delete” operation costs in the DP matching were set to be 
equivalent to 1.0 m distance. The k was set to be 300, and thus 
we retrieved 300 clusters.  

 
 
The second step is the calculation of the pattern features for 

anticipation. For each cluster, we computed two elements: a 
center trajectory and a frequency. The center trajectory is 
selected from the trajectories in the cluster and represents the 
cluster’s center. For this selection, we define inner-distance 
between a trajectory in the cluster and the cluster itself, and the 
trajectory, which has the shortest-inner distance, is selected as 
center trajectory. Eq. 1 denotes the calculation of the 
inner-distance: 
Dሺ݆ܽݎݐ, ሻܥ ൌ 	∑ Dሺ݆ܽݎݐ, ܽݎݐ ݆ሻ௧∈ .                 (1) 

Where Dሺ݆ܽݎݐ,  ሻ means inner distance between trajectory trajܥ
and cluster C, trajc means a trajectory in the cluster C, and 
Dሺ݆ܽݎݐ, ܽݎݐ ݆ሻ  means the distance between trajectories by 
using DP matching. We describe the center trajectory of cluster 
c as Trajc.  

The Frequency of Trajc is denoted as Freqc(s,t,b) where s 
represents a 50-cm grid in a space, t represents a 500-ms slice 
of time, and b represents one of four local behaviors: 
idle-walking, busy-walking, wandering, and stopping (Table 

III). These values were computed from the member trajectories 
in the cluster. For example, if in cluster c, 10 trajectories show 
idle-walking behavior in a particular 50-cm grid element s1 at 
time t1 from the beginning of each trajectory, then 
Freqc(s1,t1,idle-walking) equals 10. 

 
2) Online execution: anticipation based on the model 

The probability of future positions and behaviors is 
calculated by an algorithm based on the idea that future 
positions and behaviors should resemble those of other people 
who have exhibited similar histories of positions and behaviors. 
The algorithm estimates the probability in two steps: (1) 
calculating the similarity between an observed trajectory and 
the center trajectory of each cluster; and (2) estimating the 
probability from the frequency distributions of the most similar 
cluster(s). 

To calculate the similarity, we compared the distance 
between the observed trajectory and center trajectories Trajc 
with the DP matching method. If trajectory i is observed in the 
area covered by the sensors for tobserv seconds, the first tobserv 

seconds of Trajc are used for DP matching. 
Given cluster c whose center trajectory Trajc is closest to this 

trajectory i, the estimation of future position is computed with 
frequency distribution Freqc(s,t,b). Eq. 1 denotes the 
computation of the estimated probability of person i at position 
grid spred at future time tpred, with anticipated behavior bpred, 
Pi(tpred,spred,bpred): 


 



Ss Bb
predc

predpredpredc
predpredpredi bstFreq

bstFreq
bstP

),,(

),,(
),,( .      (1) 

To make the prediction stable, we used the 5-best method: 
(1) selecting the five most similar clusters to the observed 
trajectory and (2) averaging estimated probability 
Pi(tpred,spred,bpred) over the five clusters. 

 

C. Approaching at public distance 

In the approaching at a public distance mode, the robot 
system selects an appropriate person among the people at a 
public distance for approaching and generates a path to 
approach its target. The computation consists of two steps (Fig. 
6): (1) generating an approaching plan for each observed person 
(Section V.D.1), and (2) selecting the most promising plan 
(Section V.D.2).   

 
1) Approach Plan for Each Person 

Figure 6 overviews the processes for generating an approach 
plan. The primary idea is to make the robot approach from the 

 

(a) two trajectories (b) comparison of state chains of trajectories 
 Fig. 5 Comparison of trajectories based on DP matching [27] 

TABLE IV 
ALGORITHM OF SELECTING TURNING POINT FOR PERSON I  

1 For each t,  
Calculate fpi(t); 
Calculate Papproach(i,t); 

2 Find  tplan which satisfy 
    Papproach,i(tplan) = max( Papproach(i,t) ) ; 

3
Set anticipating point for person i 
     api =  fpi (tplan); 
    Papproach(i,t) = Papproach(i,tplan); 
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frontal direction of the target person. An example of such an 
approaching path is shown by the bold line at the bottom-left of 
Fig. 6. The robot plans to goes to an anticipating point (apitarget), 
where the robot arrives before the person arrives, and then it 
goes along the anticipated trajectories toward the coming 
person. In the computation, the system computes the 
anticipating point, estimates the success probability, and 
chooses the plan that is most likely to succeed.  

 

 
Table IV shows the algorithm for computing the approach 

plan that consists of three parts: 1) It calculates the future 
positions of the person as the candidate of the anticipating 
points, 2) it estimates the success probability of approaching for 
each future position, and 3) it selects the future point that has 
the highest success probability as the anticipating points.  

For calculating the future positions, we use the anticipated 
result of the person (Eq. 1): the weighed mean of the positions 
of person i at t seconds after the current time is applied as the 
future position (Eq. 2 and Fig. 7): 

ሻݐሺࢌ	                 ൌ ∑ ∑ ∈௦∈ௌ࢙ࢉ ∙ ܲሺݐ, ,ݏ ܾሻ,             (2) 

where fpi(t) means the future position of person i at t seconds 
later, cps is the center position of grid s, and Pi(t,s,b) is the 
estimated probability of person i in grid s at time t given by 
Eq.1. Probability ܲሺݐ, ,ݏ ܾሻ (Eq. 1) is used as the weight toward 
position vector cps (center point of grid s). 

 
The estimation of the success of an approach plan for person 

i (Papproach(i,t)) is computed with the following equation: 
   ܲሺ݅, ሻݐ ൌ ܲሺ݅, ሻݐ ∙ ܲ௧ሺ݅, ሻݐ ∙  ሻݐሺݕݐ݊݅ܽݐݎ݁ܥ

(3) 
which involves three estimates: Pack(i,t), Pfront(i,t), and 
Certainty(t). We explain the computation of these estimates 
below. 

 
Pack(i,t) 

This represents the estimate of the probability that the target 
person will be willing to interact with the robot. Such an 
accurate estimate is difficult; instead, as we discussed in 
Section IV.A, our strategy chooses a person whose future 
behavior classes are idle-walking, wandering, and stopping 
rather than busy-walking. Thus, the likelihood value is 
calculated by Eq. 4: 

				 ܲ௧ሺ݅, ሻݐ ൌ 1 െ ܲ൫ݐ,  ൯,      (4)	ሻ,busy‐walkingݐሺࢌ

where ܲሺݐ, ሻ	ሻ,busy‐walkingݐሺࢌ  is the likelihood value of 
busy-walking of  ࢌሺ࢚ሻ  at future time t. 

 
Pfront (i,t) 

This represents the probability that the robot will be able to 
approach the target person from the frontal direction. To do so, 
the robot needs to appear in advance at the place where the 
person will come. We used an approximation to estimate this 
based on the size of the margin time to change the robot’s 
orientation (Eq. 5). Thus, the margin time is the time difference 
from when robot arrives at ࢌሺ࢚ሻ to when person i arrives by 
the following calculation: 

,ሺ݅ݐ ሻݐ ൌ ൜
ݐ െ ,௩ሺ݅ݐ ,ሻݐ ,௩ሺ݅ݐ ሻݐ ൏ ݐ
																										0, ,௩ሺ݅ݐ ሻݐ   (5)         , ݐ

where ݐ௩,ሺݐሻ represents the estimate of the arrival time for 
the robot to arrive at ࢌሺ࢚ሻ from the current position. To notify 
the robot’s presence at a public distance, we must choose an 
approach plan that has high Pfront(i,t): 

ܲ௧ሺ݅, ሻݐ ൌ

												ቊ
,ሺ݅ݐ ,௧ݐ/ሻݐ ,ሺ݅ݐ	݂݅ ሻݐ ൏ ௧ݐ
																																				1, ,ሺ݅ݐ	݂݅ ሻݐ  ௧ݐ

 .    (6) 

The value for tfront=3.6 sec was determined experimentally. 
 

Certainty(t) 
Large uncertainty exists in the prediction of the target 

person’s trajectory in the future. If the system tries to plan 
further in the future, the anticipation is less likely to be accurate. 
Thus, we made an approximation of Certainty(t) based on a 
tendency to make it smaller when t is larger (Eq. 7). The value 
for tth=40 sec was determined experimentally: 

ሻݐሺݕݐ݊݅ܽݐݎ݁ܥ ൌ 			 ൜
1 െ ݐ										,௧݄ݐ/ݐ ൏ ௧ݐ
ݐ									,0																					  ௧ݐ

.            (7) 

 
2) Plan Selection 

The system selects a person to maximize the likelihood of a 
successful approach. Here, the estimated probability for the 
success of the approach toward person i (Papproach(i,t)) only 
considers information from the current moment. However, 
situations change over time, and thus a robot may need to 
change its approach target. For this problem, the system 
periodically re-calculates the anticipation and selects the most 
promising target person to approach.  

However, if we only rely on the information from each 

  
Fig. 6  Overview of generating approaching plan for person i 

 

 
 

Future point for 5 seconds after Future point for 8 seconds after
Fig. 7 Calculating future points (fpi(t)) 
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current moment, the robot might sometimes frequently switch 
among two or more people, thus its motion would be less stable 
and less efficient. To address this in the plan selection, we 
estimated the extent to which a person is likely to be "aware" of 
the robot by computing the amount of the robot’s visual 
exposure to the pedestrian over time. Table V shows our 
algorithm for selecting and updating the approaching target 
over time based on a utility function. Aware(i, tcurrent) represents 
the estimated degree of person i’s awareness of the robot at 
current time tcurrent, while Papproach(i,t)  is computed with the 
algorithm presented in Table IV, representing the estimate of 
the probability of a successful approach considering the 
information from the current moment. By maximizing this 
utility, the system selects a person who is likely on the 
successful approaching path at current moment (Papproach(i,t)) as 
well as to whom the robot is likely to be exposed well over time 
(Aware(i, t)).  

 
We consider that the person’s awareness of the robot 

depends on its relative position; the likelihood that the person is 
aware of the robot increases (a) if the robot is visible to the 
person for a long time, and (b) if the robot is coming toward the 
person for a long time. Based on this idea, we calculate the 
person’s awareness of the robot by Eq. 8. It is the sum of past 
awareness (considering long time awareness) and the current 
facing and coming relationship: 

,ሺ݅݁ݎܽݓܣ ሻݐ ൌ 
ߙ				 ∙ ,൫݅݁ݎܽݓܣ ݐ െ ௗ൯ݐ  ߚ ∙ ሺ݅ሻ݈ܾ݁݅ݏܸ݅ ∙  ሺ݅ሻ,    (8)݃݊݅݉ܥ

where ݐௗ represents the time period between the current and 
previous plan selection (i.e., 500 msec in our implementation). 
ሺ݅ሻ݈ܾ݁݅ݏܸ݅  and ݃݊݅݉ܥሺ݅ሻ	 represent the current visible and 
coming relationships that we will explain below. The values for 
ߙ ൌ 0.72 and ߚ ൌ 0.28 were determined experimentally. Note 
that we set a lower boundary for ݁ݎܽݓܣሺ݅, ,ሺ݅݁ݎܽݓܣ ሻ; whenݐ  ሻݐ
is smaller than small constant value ݄ܶ݁ݎܽݓܣ , we used 
݄ܶ݁ݎܽݓܣ  instead of its original value. This lower boundary 
represents the fact that even when a person is not aware, 
sometimes it is possible for a robot to successfully approach. 

Figure 8 illustrates the spatial relationship of target person i 
and the robot. Visible(i) is concerned with whether the robot is 
within the frontal direction of the person so that it is visible to 
the person. We empirically decided threshold angle ߠ௩௦ ൌ
గ

ଷ
൫60°൯ by assuming that the person can observe the robot if it 

is within the angle. Visible(i) is defined as: 

ሺ݅ሻ݈ܾ݁݅ݏܸ݅ ൌ ቐ
1 െ

ఏ,ೝ
ఏ

,ߠ	݂݅ ൏ ௧ߠ

െ
ఏ,ೝషഇ
గିఏ

݁ݏ݅ݓݎ݄݁ݐ
	 ,                         (9) 

where ߠ,  is the angle of the robot relative to the person's 
motion direction (Fig. 8). Note that Visible(i) function outputs 1 

if the robot is exactly in the direction of the person's motion 
direction, outputs 0 if the robot is in the threshold angle, and -1 
if the robot is directly behind the person (i.e., the opposite 
direction of the person's motion direction). 
 

Coming(i) addresses whether people would perceive the 
robot as "coming" toward them. We observed that a robot 
moving away from a person creates the impression that the 
robot is not trying to interact with the person. Furthermore, we 
observed that people are not concerned with this factor if the 
robot is moving to their side or back. Thus, we only computed 
the perception of the robot to be “coming” when it is within the 
visible angle. It is defined as: 

ሺ݅ሻ݃݊݅݉ܥ ൌ 	ቊ1 െ
ఏೝ,
గ/ଶ

,ߠ	݂݅ ൏ ௧ߠ

1 ݁ݏ݅ݓݎ݄݁ݐ
 ,                       (10) 

where ߠ,  is the angle of the robot relative to the person's 
motion direction and ߠ, is the angle of the person relative to 
the robot's motion direction (Fig. 8). 

 
3) Plan execution 

Finally, the system executes the plan. With the algorithm 
shown in Table V, target person  ݅௧௧ is chosen, thus there is 
an anticipating point for plan ࢚ࢋࢍ࢘ࢇ࢚ࢇ. Every 30 ms, the robot 

receives people's positions from the people and robot tracking 
system and actuates its locomotion platform. If the robot has not 
yet arrived within 1 m from the anticipating point, it directs its 
motion direction to ࢚ࢋࢍ࢘ࢇ࢚ࢇ  and moves; once it has arrived 

within 1 m of the anticipating point, it directs its motion 
direction to the position of person ܜ܍ܚ܉ܜܑ۾ . When the distance to 

the person is within 3 m, it stops approaching and transits to the 
initiating conversation mode. 

4) Example 
Figure 9 illustrates examples of how the system works. The 

spatial relationships of the pedestrians and the robot, as well as 
relevant probabilities, are illustrated. Fig. 9(a) is a scene in 
which a robot started to approach target A. The estimate of the 
success of frontal approaching (Papproach(i,t)) is equal for both 
persons A and B, but since the robot and person A are already 
facing each other, the estimate of awareness (݁ݎܽݓܣሺ݅,  ሻ) isݐ
higher for person A. Thus the system approached person A. 

In Fig. 9(b), two people are coming from the frontal direction 
of the robot. In the previous moments, the robot was already 
facing person C, so the estimate of the awareness for person C 
,ܥሺ݁ݎܽݓܣ)  ሻ) was higher than for person D. Thus the robotݐ
chose to keep approaching person C. 

In both cases, the awareness computation saved the robot 
from a situation in which it might frequently switch between 
two approaching targets. Once it starts approaching, and as long 

TABLE V 
ALGORITHM TO SELECT APPROACH TARGET  

1 For each person i, calculate 
Utility(i,tcurrent) = Papproach(i,t) ·Aware (i,tcurrent) 

2 Find itarget that satisfies  
    Utility(itarget,tcurrent) = max( Utility(i, ,tcurrent) )  

 

 

 
Fig. 8 Calculation of Facing(i) and Coming(i) 

robot

person i
θi,r θr,i
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as the approaching goes well, the estimate of the awareness 
increases and stays high, and thus the robot tends to keep 
approaching the same target once it has been chosen. 

 
By contrast, the example in Fig. 10 shows the awareness 

computation successfully helping switch the approach target 
when necessary, without introducing unnecessary instability. In 
scene (a), the robot was initially oriented toward person E. 
However, the system estimated that person F’s future position 
was more likely to be a successful approach target. Another 
person, G, was also coming but was estimated to be relatively 
less likely because that person G was still far away and had a 
relatively small certainty value. Thus, at this point the robot 
started to rotate toward person F. 

After 2.9 seconds, however, person F changed course (in 
scene (b)), contrary to the previous prediction. Now there is 
little possibility of success for approaching person F. In 
contrast, person G kept moving through the corridor, and at this 
point, the estimate of a successful approach was considerably 
high for person G. In addition, now the orientation of the robot 
was closer to facing person G, so the awareness value had also 
increased. At this point, the robot began to approach person G. 

 

D. Initiating Conversation 

This process is for the other mode of the robot planner, in 
which it has finished approaching the target person and has 
entered the social distance zone. Here, the robot is about to start 
a conversation with the person. The control aim at this stage is 
to clearly show that the robot’s intention is interaction with this 
target person. As our failures in our simple approach showed, 
simply uttering a greeting is inadequate.  We implemented a 
behavior to express contingency toward the target person, 
mainly using the robot's body direction. In this behavior, the 
robot quickly orients its body direction toward the target person 
when it detects that the person is about to pass by. This involves 
the following two computation steps. 

1) Classifying the reaction of approaching person 
To identify people’s passing-through action, we used a 

Support Vector Machine (SVM) to classify the trajectory of the 
approaching person into four reaction classes: approaching, 
passing, stopping, and leaving (Fig. 11). 

 

 
The classification used the following features: 

Features from approaching person’s trajectory: 
- Velocity of approaching person. Average velocity during 
last 1.1 seconds is computed (Fig. 12 (a)): 

|vሺtሻ| ൌ ቚܜ܍ܚ܉ܜܑ۾ሺݐሻ െ ݐሺܜ܍ܚ܉ܜܑ۾ െ  .ሻቚܿ݁ݏ1.1

- Angle deviation of approaching person: As shown in Fig. 
12(a), it is computed as the difference of two angles of the 
person's motion vectors. This value is large if a person 
quickly changes his/her course within the last few hundred 
milliseconds. 

ߠ ൌ ቚtanିଵሺܜ܍ܚ܉ܜܑ۾ሺݐ െ ሻܿ݁ݏ0.85 െ ݐሺܜ܍ܚ܉ܜܑ۾ െ ሻሻܿ݁ݏ1.1

െ tanିሺܜ܍ܚ܉ܜܑ۾ሺݐሻ െ ݐሺܜ܍ܚ܉ܜܑ۾ െ  ሻሻቚܿ݁ݏ0.85

 

 
 

Features from each pair of trajectories: 
-  Relative position of robot (ݔ, ݕ, and ߠ). As shown in Fig. 
12(b), the system computes its relative position of the robot 
in a coordinate where the person's motion direction 
(computed from ܜ܍ܚ܉ܜܑ۾ሺݐሻ െ ݐሺܜ܍ܚ܉ܜܑ۾ െ  ሻ) is the xܿ݁ݏ	1.1

axis. Thus, for instance, if the person is moving toward the 
robot, ݕ is nearly zero. The relative direction is computed 

as well (θ୰ ൌ tanିଵ |y୰| x୰ൗ ). 

-  Relative position of the person from robot (ݔ, ݕ, and ߠ). 
As shown in Fig. 12(c), the system computes the relative 
position of the person in a coordinate where the robot's 
motion direction (computed from ܚ۾ሺݐሻ െ ݐሺܚ۾ െ  (ሻܿ݁ݏ	1.1
is the x axis. The relative direction is computed as well 

(θ୮ ൌ tanିଵ
|y୮|

x୮൘ ). 

We used 45 trajectory pairs where the robot approached 
visitors. The accuracy of the classification was tested with the 
leave-one-out method, which yields an 88.9 % recognition rate.  

 

 
(a)  (b)  

Fig. 9 Choice of approaching target considering "awareness" 
 

 

 
(a) Person F is selected as approaching 
target 

(b) Approaching target is switched 
to person G 

 
Fig. 10 Switching of the approaching target 

 
(a) approaching (b) passing  (c) leaving 

 
Fig. 11 Classification of reaction of approaching people 
 

 

(a) Velocity, and angle 
deviation 

(b) Relative position of 
robot 

(c) Relative position of 
person 

 
Fig. 12 Features for classification 
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Fig. 13. Results of field trial 
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2) Generating robot’s motion 

The robot changes its motion depending on each class of the 
reaction of the approaching target. 

 
Approaching: 

When the person is reacting as approaching, the robot 
continues to approach the target person. We applied a position 
control method, whose target is the position of the approaching 
person, to continue approaching. 

 
Passing: 

When the person is reacting as passing, the robot must 
immediately react to this situation. This reaction typically 
happens when the approaching person is unsure of the robot’s 
intention to interact; thus we control the robot so that its body 
orientation quickly faces the approaching person to show its 
intention to interact. We set the robot's rotation velocity to 60 
degrees/sec toward the direction of the person until the robot is 
facing the direction of the person. 

 
Stopping: 

This is the case where the approaching person stops in front 
of the robot. This typically happens when the person accepts 
interaction with the robot. This is the moment when the robot 
should start a conversation. 

 
Leaving: 

In this situation, since the approaching person is leaving the 
robot, it should abandon a conversation with this person and 
seek another approaching target. 

 

VI. FIELD TRIAL 

We conducted a field trial at a shopping mall1 to evaluate the 
effectiveness of our proposed approach behavior. The robot’s 
task was to approach visitors to provide shopping information. 
The details of the environment and task are described in Section 
III. 

A. Procedure 

We compared the proposed method with a simple approach 
behavior to evaluate its effectiveness. Since no existing method 
addresses the process of approaching a walking person, we 
used an approach behavior based on common-sense 
considerations for our comparison. Specifically, the "simple 
approach behavior" reported in Section IV was used, which is 
based on the assumption that a robot can be successful by 
simply approaching the nearest person. In both methods, the 
same infrastructure, the robot hardware (IV-B) and people 
tracking and localization (Section V-B) were used. The details 
of the proposed approach behavior are reported in Sections V-C, 
D, and E. 

 
1 In this study, we obtained approval from the shopping mall administrators 

for this recording under the condition that the information collected would be 
carefully managed and only used for research purposes. The experimental 
protocol was reviewed and approved by our institutional review board. 

For the comparison, we ran the trials for several sessions to 
eliminate such environmental effects as the time of the trial. 
Each session lasted about 30 minutes. The two conditions, 
simple and proposed, were assigned into sessions whose order 
was counterbalanced. We ran the experiment for two hours for 
each condition, and about the same number of approach 
behaviors (59 for the proposed method and 57 for the simple 
method) were conducted in each condition. The number of 
people in the corridor was also equivalent in both conditions. 
On average, there were 4.09 people for the proposed method 
and 4.06 people in the simple method (distributed between 1 to 
14 persons, s.d.= 2.70, and 3.68). 

B. Improvement of Success Rate 

Figure 13 shows the comparison results. The approach 
behavior was defined as successful when the robot’s approach 
target stopped and listened to the robot’s utterance at least until 
the end of its greeting. In this section, we defined the term 
“trials” to denote actual approaches toward people and not 
simply the number of people passing through the area. 

With the proposed method, the robot was successful in 33 
approaches out of 59 trials (252 people passed through). On the 
other hand, with the simple method the robot was only 
successful 20 times out of 57 trials (221 people passed through). 
A chi-square test revealed significant differences among 
conditions (χ2(1) =5.076, p<.05). Residual analysis revealed 
that in the proposed method, successful approaches were 
significantly high (p<.05), and failed approaches were 
significantly low (p<.05). Thus, the experimental result 
indicates that the proposed method contributed to greater 
successful approach behavior. 

C. Detailed Analysis of Failures 

Based on the criteria of Table I, to reveal why the failures 
decreased in our proposed approach, a third person without 
knowledge of our research purpose classified them by watching 
videos and position data during the field trial. 

These failures are consequentially related: unaware failure 
only happened when the robot reached the person, and unsure 
failure only happened when the person was aware of the robot. 
Only a sure person rejected the approach. Thus, we can model 
these processes as a probabilistic state transition. Fig. 14 
summarizes the calculations at each failure category. 
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Table VI shows the failure rate at each step in each condition. 

In Table VI, the denominators used for calculating each failure 
are different; for example, “unreachable” failures were counted 
as a fraction of the number of approach attempts, but “unaware” 
failures were only counted among the number of people 
reached by the robot.  

Overall, this result indicates improvement in the unreachable, 
unaware, and unsure steps from the simple approach behavior. 
Unreachable and unaware failures largely decreased. 

D. Detailed Analysis of System Performance 

We further analyzed how the proposed system worked, how 
it contributed to reduce failures, and what are the missing 
capabilities to further reduce the failures. Three analyses were 
conducted.  

 
Accuracy of anticipation for person’s position: 
    One of the key computations related to unreachable and 
unaware failures is the anticipation of people's future positions. 
Thus, we evaluated the anticipation accuracy.  
To evaluate the effect of the anticipation, we evaluated two 

approach methods: 
The proposed approach: The robot approaches to a person 
by using developed techniques described in Sec. V. Its 
anticipation accuracy is evaluated. 

The simple approach: As a comparison, we evaluated the 
anticipation performance of the simple approach. Although 
there is no explicit use of anticipation technique, it could be 
considered as the anticipation that the robot and target 
person would meet in the middle of their current position, 
(thus the robot directly moves toward the person).  

Fig. 15 illustrates the idea behind this evaluation. The detailed 
computation is described below: 

 
 

Ground truth: The "end point" is the point when the approaching 
behavior lasted either when (1) the initiating interaction is 
successful, (2) the failure of approaching because the person exit 
from experiment area, or (3) the robot gave up approaching 
because estimated change is too low. 

Measurement: In the proposed method the "anticipated" meeting 
point is computed as the middle point of the anticipated point 
(api), which is the location at which the robot planned to arrive at 
time tarrive, and fpi(tarrival), which is the expected position of the 
person at time tarrive. The facing direction (Fig. 15(b)) is the 
walking direction of the person when the person actually met. In 
the simple approach method, the anticipated meeting point is 
computed as the middle point of the robot’s position and the 
target person’s position. 

Anticipation error: We evaluate two types of anticipation errors: 
the error in distance and the error in angle. The error in distance 
is computed as the distance between the real and anticipated 
meeting-points. The large error in distance would result in 
unreachable failure. The error in angle is computed as the degree 
from the facing direction to the anticipated meeting-points. A 
large error in angle would result in failure in locating the robot in 
wrong direction from the person’s view, and thus cause unaware 
failure. 

 
Anticipation error: 
Figure 16-19 show the result. The horizontal axis shows the 
anticipation distance, which is the distance from the robot to 
the target person when the anticipation was made. The vertical 
axis of figure 16 and 17 shows the anticipation error in 
distance; the vertical axis of figure 18 and 19 shows the 
anticipation error in angle.  The plot has two types of markers; 
the square markers show the result of the success approach, and 
the triangle markers show the result of the failure approach. 792 
anticipations were made during the 59 approaches with the 
proposed method (Fig. 16 and Fig. 18). 1276 anticipations were 

 
Fig. 14. Calculating failure ratio at each step 
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TABLE VI 
RATIO OF OBSERVED FAILURE IN EACH STEP 
 Proposed Simple 

Unreachable 3% 25% 
Unaware 4% 14% 
Unsure 18% 24% 

Rejective 27% 29% 

 

(a) Evaluating anticipating accuracy for proposed approach 
 
 

(b) Evaluating anticipating accuracy for simple approach 
 

Fig. 15. Evaluating anticipating accuracy 
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made during 57 approaches with simple method (Fig. 17 and 
Fig. 19 ). Note that no anticipation was made when the distance 
to the person was less than 3 m, since the robot transited to the 
"initiating conversation" mode. 
    We identified three findings. First, the accuracy of the 
proposed approach is higher than the simple one. The average 
of distance error in anticipations on the proposed was 2.27m, 
and the error on the simple was 3.38m. The average of angular 
error in anticipations on the proposed method was 39.1 degree, 
and the error on the simple method was 81.1 degree. It is 
notable that the angular error is so large in simple method. This 
is often caused by unreachable failure case: the simple 
approach sometimes tried to move toward the person who was 
going to left from the robot: such the person face toward 
opposite direction and thus the error in angle is nearby 180 
degree. Such case is much fewer in the proposed method. 

 

 

 
 

 
 

Second, as expected, the anticipation errors in distance were 
smaller when the anticipation distance was smaller, because it 
is rather difficult to anticipate position with more future time. 
For instance, when the anticipated distance was larger than 5 m, 
the average of the anticipation errors in distance was 3.05 m 
and the average of anticipation errors in angle was 45.1 degree. 
When the anticipation distance was less than 5 m, the 
anticipation errors in distance averaged 0.648 m. and 
anticipation errors in angle averaged 28.7 degree.  

Third, there are rather small differences between errors in 
distance in the successful and failure cases. For cases when the 
anticipated distance was larger than 5 m, the average error was 
3.21 m (s.d. 2.19 m) for success cases and 2.97 m (s.d. 2.51m) 
for failure cases. When the anticipated distance was less than 5 
m, the error was 1.19 m (s.d. 0.97 m) for success cases and 1.51 
m (s.d. 1.67 m) for failure cases. Thus, in either successful and 
failure case, anticipation error was rather similar, and the robot 
was able to approach nearby pedestrians using the anticipation 
computation.  

On the other hand, as shown in the figure 17, in case of 
failure approach it rather failed to anticipate direction of the 
target person. When the anticipated distance was larger than 5 
m, the average error was 41.0 degree (s.d. 39.7 degree) for 
success cases and 54.5 (s.d. 43.9 degree) for failure cases. 
When the anticipated distance was less than 5 m, the error was 
27.9 degree (s.d. 25.5 degree) for success cases and 30.2 degree 

Fig. 16. Distance error in anticipations for proposed method 
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Fig. 17. Distance error in anticipations for simple method  
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Fig. 18. Angular error in anticipations for proposed method 
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Fig. 19. Angular error in anticipations for simple method 
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(s.d. 29.2 degree) for failure cases. This implies that failure in 
anticipating direction could result in failure in approach 
particularly when the robot is rather at far distance (larger than 
5m). 

Note that since our anticipation method does not consider 
people's behavior toward the robot, one might wonder to what 
extent anticipation could be correctly done if people changed 
their trajectory when approached by the robot. First, in only 
3.4% of the cases did people seem to change their course to 
avoid the robot. For such cases, anticipation does not work well. 
In contrast, when people did not change their course but only 
changed their speed (e.g., slowing down when the robot 
approached), their new trajectory resembled other patterns of 
stored trajectories from pedestrians who walked rather slowly. 
The system was able to anticipate their positions. 

Overall, we believe that this anticipation computation 
provide much better estimate about people’s future position in 
comparison with the simple approach method, thus reduced the 
number of “unreachable” failures. The proposed method also 
reduced angular error, meaning that the robot was more likely 
to approach the target person from frontal direction. It is 
reported that people’s view angle during walking is about 80 
degree (40 degree for each side) [40]. Thus, average of 39.1 
degree error would mean that often the robot was in the sight of 
the target person. In other words, the system successfully 
planned a frontal-approach in order to announce its presence to 
the approached person owe to the anticipation technique. Thus, 
we believe that anticipation also reduced “unaware” failures, 
though there would be a further possibility to improve 
approaching performance if we can make the anticipation more 
accurate. 

 
Accuracy of anticipation for person’s behavior: 
    Aiming to reduce the number of “rejective” failures, in the 
computation of Pack,i(t) in Eq. (4), we used our anticipation 
technique for future local behavior (i.e., one of four classes: 
idle-walking, busy-walking, wandering, and stopping) and 
computed whether a person will do busy-walking. Such a busy 
person is less likely to accept initiation from a robot. We 
evaluated the anticipation accuracy of the busy-walking 
behavior. 

Ground truth: for each approached person, two coders, who 
were not informed about the system's output, classified the 
pedestrian behaviors when the robot was near the person 
into two categories: busy-walking and other. The Cohen's 
kappa coefficient from their classifications was 0.727. 

Evaluation: for each category of busy-walking and others, 
the likelihood estimate output from the system was 
compared at each moment the system computed the 
approaching behavior, i.e., for each 500 msec. 

Figure 20 shows the likelihood output. The horizontal axis 
shows the anticipation distance, which is the distance to the 
position of the person when the anticipation was made. The 
vertical axis shows the average likelihood of busy-walking 
output by the system. The two lines correspond to the ground 
truth categories of busy-walking and other. 
    The result shows that the system output higher likelihood of 

future busy-walking for people who finally performed 
busy-walking than for people who did other behaviors. This 
tendency was more prominent when the anticipation distance 
was within 3.5 m. As expected, the system was more accurate 
in anticipation for the near future than for the more distant 
future. 
    On the other hand, there was a relatively small, 0.1 point 
difference in output value, even when the anticipation distance 
was 3.5 m. This is one potential reason why the system was not 
so successful in reducing rejective failures. It may have still 
been considering people who do busy-walking. However, 
further analysis revealed that only 5.0% of the approached 
targets were busy-walking when approached. Perhaps the 
people who did busy-walking walked fast and thus were less 
likely to be computed as approachable. 
    Among the rejective failure cases, the ratio of busy-walking 
people was large. 15.4% of all rejective failure cases were 
people who did busy-walking. Yet, the remaining 84.6% 
rejecive failures were cases where people did other behaviors. 
Overall, we believe that there are many other reasons for 
rejection beyond walking quickly, including that some were 
just not in the mood to stop and talk with a robot. It is 
unrealistic to expect that all people accept such an 
advertisement service from a robot.  
 

 
 

Accuracy of classifying people's reaction in conversational 
distance 

When the robot transited to the "initiating conversation" 
mode, it observed the target person's reaction. We evaluated the 
accuracy of this classification. 

Ground truth: for each approached person, two coders, who 
were not informed about the system's output, 
independently classified the reactions of all the 
approached people. They used the same classification as 
the system did; they labeled people’s reactions as 
approaching, passing, stopping, and leaving. They 
specified the point when people's behavior changed and 
provided labels in a continuous manner for the time series. 
The Cohen's kappa coefficient from the two coders’ 
classifications was 0.869. 

Classification accuracy: the system computed this every 
100 ms. For each classification the system made, we 

Fig. 20. Anticipation accuracy for busy-walking 
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compared whether the output from the system matched the 
label given by the coder. 

Reaction delay: the classification goal is to detect the 
moment when people's behavior changed from 
approaching to passing. We evaluated the delay from the 
moment when the person's behavior changed to passing 
(given by the coder) to the moment when the robot 
physically started to change its body direction toward the 
person. 

 
Table VII shows the classification accuracy results, 

separated per category in ground truth. The classification 
accuracy was 73.2%. It performed reasonably well for three 
categories: approaching, leaving, and stopping, but accuracy 
for passing was relatively low. Apparently, passing is the most 
difficult category to recognize. About half of the passing 
situations (19.9% of the total) were finally recognized correctly, 
but not exactly when they happened. This would cause a delay 
in the robot’s reaction. The system recognized passing an 
average of 153 ms after the ground truth timing. Such a delay 
was relatively small in contrast to people's passing behavior, 
which typically takes a second or longer. Overall, the robot 
finally performed reactions toward 76.0% of the passing people 
as designed. Since the remaining half of the passing situations 
(24.0% of the total) were simply overlooked, the robot failed to 
display a reaction to those people as they passed. 

In addition to the recognition delay, there were other delays. 
For instance, computation only happened every 100 ms, and 
there were delays in transferring commands and in controlling 
the actuators. The analysis of reaction delay revealed an 
average delay of 259 ms from the timing in the ground truth to 
the robot's initiation of action for the cases when the robot 
reacted to the passing behavior (76.0% of the cases).  

Overall, we observed that our system worked reasonably as 
designed to reduce unsure failures, although the improvement 
remains unclear, and a considerable number of failures still 
happened (18%) at this step. We further analyzed the unsure 
failure cases and found that the system failed to react for 61% 
of them. This implies that we could further reduce the 18% 
failure ratio at this step by improving the classification 
performance. In the remaining 39% of unsure failures, people 
seemingly did not recognize the robot’s reaction. This would be 
difficult to prevent with classification improvement, but it 
could be improved by considering a better way of expressing 
reactions from the robot. Perhaps the robot's motions were too 
subtle. 

E. Interaction observations after initiating conversation 

Apart from the approaching interactions, we note a couple of 
interesting observations. Since the robot’s role was 
advertisement, it talked about shops in the mall to the visitors. 
Its content was relatively simple since the focus was on the 

approaching interaction. 
In one successful approach, the robot approached a young 

couple and said, “There’s a nice restaurant named Restraint 
Bay in this mall. You can see Osaka Bay from it. The view is 
beautiful!” The women said to the man, “He says the restaurant 
has a good view. How about visiting it?” The information was 
very timely and influenced their decision. 

A similar interaction happened with a child who wanted 
some ice cream. In this situation, the robot said, “Today is 
really hot! If you want something cold, how about some ice                  
cream? I know a good shop named The Soft Cream House.”  
The child was excited by this information and asked his mother 
for ice cream. They were also influenced. 

 These examples show that a robot can influence people by 
providing information. 

 

VII. DISCUSSION 

A. Summary 

The field trial demonstrated a success rate of 55.9% for our 
approaching technique, which we consider to be reasonably 
high. The targets in this study were people who were going 
through a shopping mall. Many reasons might explain their 
reluctance to interact with the robot. Even walking slowly, they 
might be busy chatting with their friends. They might be 
preoccupied with a particular shop. We cannot expect very high 
acceptance from them. Note that with the proposed method, 
unreachable and unaware failures (Table V) greatly decreased. 
Unsure failure seems to have decreased, yet it remains frequent. 
We believe that this is because this category includes indecisive 
cases where they slowed down to see the robot but were not 
very willing to interact with it. The robot did not aggressively 
initiate interaction, and since the application was advertisement, 
the robot must not irritate potential customers. 

B. Applications  

A couple of possible applications could be enabled by a robot 
with better approach capabilities. As demonstrated in this paper, 
providing advertisement information is one possible 
application. Moreover, this approach capability enables a robot 
to proactively serve people who are unaware of its presence or 
of its capabilities; e.g., a robot can provide route direction for a 
person who is lost. Since people sometimes hesitate to ask for 
help, a proactive way of serving is also helpful. In our study, 
people could nonverbally reject these services if they wanted; 
we believe that this functionality is also useful to politely 
provide such a proactive service. The proposed approach model, 
however, is not limited to information-providing tasks. It can 
also be applied to such functions as porter, shop salesperson, 
receptionist, and security guard. 

We believe that further improvement is required before we 
apply our approaching technique to these applications. We need 
to adjust a strategy to select a target person depending on the 
application. For providing advertisement information, as this 
paper addressed, the strategy can be simple: the robot 
approaches a person who is not “busy.” For other applications, 

TABLE VII 
ACCURACY OF CLASSIFICATION OF PEOPLE'S REACTION 

 
 approaching passing leaving stopping total 
result 75.0 % 56.1 % 71.8 % 95.2% 73.2% 
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strategies may be more complex. A route-guide robot needs to 
identify people who appear lost, which would require 
observations of a person’s trajectory to find certain patterns. A 
porter robot might need to be able to observe whether a person 
is carrying a piece of luggage.  

 

C. Parameters 

    We experimentally determined several parameters in our 
algorithm. One would ask how general they are, and how the 
parameters should be determined if they are not generalizable. 
Here, we discuss how we consider the influence of parameters 
and to what extent they are general or must be set up. Note that 
due to the nature of our study that was conducted in a real field 
environment, we did not run rigorous and systematic 
experiments and instead repeatedly conducted exploratory 
experiments. 

Planning frequency (ࢊ࢘ࢋ࢚): this was set to 500 ms due to 
the limitation of computation performance, while being 
realistically fast enough to respond to people's walking 
behavior. We expect that this would work for any other 
environment, but it would probably be useful to make it 
smaller.  

tfront: this was set to 3.6 sec. In our exploratory experiments, 
we searched for a reasonable parameter, starting from small 
values. The smaller values resulted in approaching from the 
side or causing unreachable failures. Until the value 
exceeded 1.5 sec, it performed very poorly. The performance 
improved until the value we used, 3.6 sec, and did not 
improve after that. We expect that the parameter (3.6 sec) 
can be used in other environments as well, which would 
produce a reasonable amount of time for the robot to 
approach from the frontal direction. On the other hand, since 
our experimental area was relatively small, we expect that it 
could be useful to use a larger value for this parameter with 
robots in a larger environment. It would increase the time for 
which people can see the robot approaching from the frontal 
direction, so it will provide more comfortable service, 
providing people enough time to consider whether to accept 
the service. 

tth: since this parameter reflects prediction accuracy, it 
depends on the nature of the environment (e.g., whether 
people are likely to walk in similar patterns) as well as the 
prediction algorithm used. We set this to 40 sec, which is 
simply a large value within which we consider the prediction 
to be somewhat reliable. Concretely speaking, in our 
environment, it takes an average of 19.8 seconds to pass 
through the corridor, and people rarely spend more than 40 
seconds if they are simply passing through. Some people 
stayed at benches in the environment for more than 40 
seconds, although predicting non-walking people's behavior 
in 40 seconds of the future is extremely difficult. Overall, we 
made rough estimations that prediction over 40 seconds in 
the future is useless, and that the reliability of anticipation 
will simply decrease linearly as the look ahead time increases 
up to this limit of 40 seconds. We believe that a similar 
approximation would be sufficient in other environments. 

We could use a distribution of the prediction accuracy as a 
function of time, if available. 

ࢻ  and ࢼ  in the plan selection (Section VI C-2): these 
parameters control to what extent the system considers the 
previous history of the person’s awareness of the robot over 
time, in contrast with the immediate utility. With smaller ߙ 
(or larger ߚ) the robot oscillates between approach targets, 
and with larger ߙ (or smaller ߚ) it tends to keep trying to 
approach a target person who is no longer likely to initiate 
conversation (particularly when the target is still 
approachable in terms of distance to travel, but it has started 
to turn in a different direction and is no longer facing the 
robot, perhaps to avoid interacting). In our environment, we 
chose a value that does not cause oscillation of switching the 
targets and chose 0.72= ࢻ. 

D. Prediction algorithm 

This study is based on the prediction algorithm reported in 
[27], which assumes that the behavior of currently observed 
people will resemble that of previously observed people. It 
predicts future trajectory from a couple of groups that resemble 
the current trajectory. While this provides a rough estimation of 
future position, which was sufficient for our purpose, there is a 
limitation. Since the algorithm does not consider interaction 
among people or other entities, the prediction is not necessarily 
accurate around the robot, due to possible influence from the 
robot. Because our environment was relatively small, this 
approach did not cause a problem; but when we consider how to 
extend our system for larger environments, we will probably 
need further study for the prediction algorithm, since people 
have much more interaction with other people if they travel 
longer. 

VIII. CONCLUSION 

We reported the development of a technique for a robot to 
approach walking people, particularly visitors in a shopping 
mall. We used the failures of a simple approaching method to 
guide the design of a better approaching behavior. Its main 
concept is to anticipate people’s future trajectories and plan an 
approach path based on the anticipated trajectory of the targeted 
person. In the developed system, the anticipation method 
extended a previous method [27] with more samples (26863 
trajectories) and improved the computation of future behavior. 
Moreover, when the robot approaches close enough, it changes 
its working mode to provide quick responses to unsure 
reactions from the target. 

The developed system was tested in a real shopping mall, 
and the results demonstrated its effectiveness. The success rate 
of the approaches significantly increased. The proposed system 
was successful in 33 out of 59 approaches, whereas the 
simplistic approach was only successful in 20 out of 57 
approaches. Many different applications exist for this approach 
behavior, and they are not limited to simple advertisement 
services where a robot just recommends shops, but will be 
connected to other services for helping people with both 
physical services (e.g., transporting luggage) and 
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information-providing services. 
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