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Abstract The development of humanlike service robots

which interact socially raises a new question: How can

we create good interaction content for such robots? Do-

main experts specializing in the target service have the

knowledge for making such content. Yet, while they can

easily engage in good face-to-face interactions, we found

it difficult for them to prepare conversational content

for a robot in written form. Instead, we propose involv-

ing experts as teleoperators in a short-cycle iterative

development process in which the expert develops con-

tent, teleoperates a robot using that content, and then

revises the content based on that interaction. We pro-

pose a software system and design guidelines to enable

such an iterative design process. To validate these so-

lutions, we conducted a comparison experiment in the

field, with a teleoperated robot acting as a guide at a
tourist information center in Nara, Japan. The results

showed that our system and guidelines enabled domain

experts with no robotics background to create better in-

teraction content and conduct better interactions than

domain experts without our system.
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Fig. 1 Teleoperation of a robot interacting with a visitor at
a tourist information center

1 Introduction

1.1 Communicative Knowledge

Recently, robotics researchers have been investigating

the use of humanoid robots to provide services for and

interact with people in everyday social environments,

such as assisting in nursing homes [29], providing route

guidance in a shopping center [33], helping people to do

their shopping in a supermarket [12], greeting people at

a reception booth [11], and interacting with people on

city streets [42]. As such robots become common in so-

ciety, it will be important for them to provide informa-

tion to people through humanlike interaction (Figure

1).

However, the question arises: how can we develop

good content (utterances and gestures) for such robots

to provide information in a conversational style? It can
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be difficult for a programmer or researcher to create

such content if they lack expertise in the target service

domain. While people such as drama majors [11] could

be considered experts in social interaction in general,

they are not actually experts in a target application

domain for the robot. It would be difficult to create

content for a teacher, doctor, or salesperson robot, for

example, without having the specific skills and knowl-

edge for that job, even if one had access to factual in-

formation related to that domain.

This is because, aside from the factual knowledge

required to perform a service effectively (e.g. knowing

the route to the nearest convenience store), there is also

communicative knowledge which is equally impor-

tant. For example, a teacher needs to know not only

curriculum contents (factual knowledge) but also how

to capture the attention of and motivate students (com-

municative knowledge). A doctor needs to understand

the mechanisms of disease (factual) but also know how

to talk to patients in a compassionate way (communica-

tive). While factual knowledge is often documented and

relatively easy for a robot developer to acquire, commu-

nicative knowledge may be undocumented and can only

be provided by a domain expert.

This concept of communicative knowledge is a special

case, focusing on skills used in communicative interac-

tions, of what is more generally referred to as “tacit

knowledge” [30]. An analysis of concepts related to this

phenomenon, such as implicit learning, and a good sum-

mary of related work are presented in [7]. In the field of

Human-Robot Interaction, the concept of “design pat-

terns for sociality” [15] encapsulates some common ex-

amples of everyday communicative knowledge that can

be used in the design of social behaviors. In this study,

we are concerned not with these general patterns, but

with patterns specific to a given field of expertise, which

might not be obvious to a non-expert attempting to de-

sign an interaction.

1.2 Teleoperation and Content Development

So, can service experts make good interaction content

for humanoid robots? According to our experience, no.

In preliminary studies, we discovered that it is not intu-

itive for domain experts to sit at computers and create

textual content for a robot to provide a service in their

own natural conversational style.

This is because communicative knowledge is often im-

plicit and difficult to codify into explicit rules to store

for future use. Thus, we believe that content incorporat-

ing this knowledge can be most easily created through

an iterative process of content generation and conver-

sational interaction through teleoperation, where the

expert can use their communicative knowledge in an

intuitive way.

We consider this teleoperation phase to be quite im-

portant in the content development process. As pre-

vious studies have revealed, situation coverage, repre-

senting the amount of knowledge stored in the robot,

can be increased over time through teleoperation [18].

Content prepared in advance is typically premature,

and through observing real people’s reactions, an op-

erator can identify content that is missing or needs to

be changed. Hence, we believe domain experts can gain

useful feedback through the process of teleoperation.

We aim to integrate this step of real interaction through

teleoperation into an iterative process for the develop-

ment and refinement of interaction content.

1.3 Applications and objectives

The generation of behavior content for conversational

interactions has several potential applications. The first

and most immediate goal of our study is to create a sys-

tem that enables tele-work by expert users. The system

should be fast and easy to use, e.g. by minimizing the

need for typing, so it is important for the majority of

spoken content and associated gestures to be entered

ahead of time, rather than during operation.

In this study, we consider the case where the content

entered by one operator is used by that same operator.

In the future, this scenario could be extended to in-

clude collaborative development of content by a group

of operators, or even development of content by expert

operators to be used by non-experts.

In addition to pure teleoperation, large stores of inter-
action content can provide a basis for automating parts

of an interaction, enabling the development of semi-

autonomous systems. Such systems could still be con-

trolled by expert operators, but with a lower workload.

A possible application of this type of system would be

multirobot teleoperation, like that shown in our previ-

ous studies [8].

Finally, in the more distant future, the collection of

enough interaction data may make it possible to train

fully-autonomous interactive social robots to perform

the tasks of domain experts, in which case the opera-

tors would take on the role of trainers for the service

robots.

1.4 Scenario - Sightseeing Guide Robot

In this study we consider the scenario of a robot pro-

viding information for tourists. The interaction content

for such a robot would need to include a large amount
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of factual knowledge about the tourist attraction, its

history, etc., as well as communicative knowledge like

how to capture and sustain the interest of the tourists

and how to tell stories in an engaging and exciting way.

The ideal domain experts who could provide this knowl-

edge would be people currently working as guides at

the target location in question. In Japan, there are

many guide associations where senior citizens volunteer

their time to work as guides and provide information to

tourists about sightseeing attractions.

In this study, we worked with one such volunteer guide

association in the city of Nara, Japan. The members of

this group are all retired senior citizens, with an average

age of 68.4. As walking around and providing informa-

tion is physically demanding, the guides need to take

time to rest and cannot work every day. Consequently

they are often understaffed during busy seasons, and

they were quite receptive to the idea of using robots to

help reduce their workload.

Working with senior citizens provided some challenges,

as most participants were not frequent computer users

or fast typists. We did make accommodations for this,

such as using large font and button sizes in our soft-

ware interface. However, the focus of this study was not

about their limitations, but rather on accessing their

rich factual and communicative knowledge developed

over years of experience as guides.

2 Related Work

2.1 Dialog Construction

In the studies of dialog, there have been a couple of
dialog models developed. Typically, a dialog model as-

sumes “tasks” in a dialog. That is, it assumes typi-

cal flow and/or set of information to be exchanged.

For example, in case of ticket selling, a dialog system

would expect to receive information about a customer’s

request on departure time, destination, and number

of passengers. For such task-oriented dialogs, a state-

transition model or information-frame model fits well

[24]. There are also authoring tools [9] [23], frameworks

[1], and description languages [20] [27] that support the

preparation of such task-based dialogs.

However, we aim to realize a chat-like conversation,

where it is hard to anticipate a typical flow or set of in-

formation. There are agent-based models that can han-

dle flexible dialogs, but it is difficult for people who are

not experts in dialog systems to construct such dialog

models [24]. Overall, these dialog studies did not reveal

a way to convert knowledge from domain experts (who

are not experts in dialog systems) into data useful for

a robot’s conversation.

Toward the problem, an alternative approach would be

the modeling of novice people’s dialog. Chernova and

her colleagues developed an on-line game to collect peo-

ple’s dialog, and converted the collected dialog data into

behaviors for a robot [5]. While such approaches based

on large datasets hold great promise, it can be difficult

to collect such data in advance, particularly if a dia-

log requires specific domain expertise that non-experts

would not have.

In other work, the behavior of domain experts has some-

times been analyzed, e.g. to develop dialogue manage-

ment systems based on a belief-desire-intention frame-

work [39], or for training knowledge-based systems to

mimic an expert’s decision processes [2].

2.2 Iterative Content Development

Iterative approaches to content development for robots

have often been explored in the context of human-robot

interaction. The work by Kuo et al. illustrates a typical

example of iterative design for service robots [21], and

Lohse et al. explored the conceptual requirements for

an architecture to support iterative user-driven design

[22].

The idea of short-cycle iterative design has parallels in

robotic learning-from-demonstration scenarios as well,

e.g. [31,44], although these studies focused on tasks

other than conversational human-robot interaction.

2.3 Telepresence and Partial Autonomy

Previous studies have revealed a number of ways to

provide service from distant locations. Telephone and

video conferencing are already in widespread use, and

recently telepresence robots have also come into use

[28] [37] [43]. Studies have begun to investigate support

techniques for telepresence robots [35]. In all of these

telepresence approaches, it is a human user/operator

who engages in a single channel of dialog.

In contrast, our approach uses partial autonomy, a flex-

ible approach which can eventually enable multiple con-

versations to be supervised by a single operator [8]. In

this approach, the ultimate goal is to let the system

handle the majority of the dialog, with operators des-

ignated to support the system only when a situation is

not covered by autonomy. While many situations can be

automated for simple information providing dialogs [45]

and greeting and information-providing services [17],

previous studies have not shown how to prepare and

update dialog contents, or how to involve domain ex-

perts in the loop.
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Although full or partial teleoperation may be appropri-

ate for many applications, the content created through

this procedure could conceivably be used in autonomous

systems as well, using learning-based approaches for ac-

tion selection [3].

2.4 Guidelines for Dialogue Design

There are several research works which have focused

on dialogue design for conversational agents. For exam-

ple, Hollingsed et al. have investigated the effectiveness

of the short-term response behaviors by using a tuto-

rial system [36]. Moreover, Ward et al. have reported

some usability issues in spoken dialog applications such

as responsiveness, feedback and so on [41]. Jung et al.

considered a set of guidelines for developing behaviors

for social robots, although their focus was on motion,

rather than dialog [14]. These research works tried to

identify important rules for dialog systems, but they did

not focus on how to create a situation where domain ex-

perts can effectively create dialogue on their own, using

their own intuitive rules.

By contrast, this paper aims to enable domain experts

themselves to create content for a conversational robot.

3 Interaction guidelines

In this study, we propose an iterative procedure, alter-

nating between the creation of conversational content

and teleoperation using that content. To explore the ef-

fectiveness of this technique, we conducted several pre-

liminary trials in which we brought a small focus group

of members of the guide organization into our labo-

ratory periodically over a period of several weeks. We

asked them to create and test interaction content using

early prototypes of our system. We watched them and

talked with them to try to understand which aspects of

the procedure they found difficult, and we brainstormed

new features for the interface which could assist them

in creating better content and smoother interactions.

We observed that the iteration process often did not

provide feedback as we had hoped; operators could not

create good dialog content, and the interactions they

conducted were unnatural, slow, and awkward. We think

this means that they were not able to create good in-

teractions and content in a natural way. When the con-

versational content and/or operational technique were

below some basic threshold of quality, it was not possi-

ble to conduct a smooth interaction, and so the operator

did not get useful feedback to improve the content.

To help operators avoid these problems, we categorized

a number of common mistakes that we observed. Based

on these observations, we compiled a set of guidelines to

assist future operators in producing good interactions.

These guidelines can be classified into three main cate-

gories as shown in Table 1: Responsiveness, Initiative,

and Interactivity. Responsiveness is important at all

times, whereas Initiative and Interactivity are comple-

mentary, and they must be balanced carefully against

each other.

As a note of clarification, in this paper, we use the term

“behavior” to refer to some combination of utterance

and/or gesture. The primary focus of this study was

on spoken dialog content, so we are chiefly concerned

with the utterance aspect of behaviors. In some places

we will use the term “utterance” and “behavior” some-

what interchangeably, but where the system implemen-

tation is concerned we will use the term “behavior,” as

our implemented system does support gestures as well

as speech.

3.1 Responsiveness

The first problem we observed was lack of responsive-

ness in the robot’s interactions. The problem of timing

and responsiveness, e.g. in turn-taking has been studied

both in psychology [32] and in robotics [4], and it has

been found that proper response timing is correlated

with higher social skills [26].

One example of poor responsiveness is when the robot

responded to the visitor slowly, after a long silence.

Sometimes this happened when the operator was tak-

ing time to search for a proper utterance from a list

and didn’t seem to feel any time pressure. Other times,

the operator didn’t find an appropriate behavior in the

system and instead took a very long time to type a new

utterance.

Another problem with responsiveness is when the robot

responded promptly, but appeared to ignore what the

visitor was saying. For example, when the robot asked

one visitor, “Where are you from?”, and he answered,

“I’m from Hokkaido!” the next utterance from a robot

was “I’ll explain about Nara.” The visitor felt that

the robot was not listening to what he said, or didn’t

care. Guidelines for responsiveness emphasize the im-

portance of listening to the visitor and responding quickly

and appropriately.

Reaction time Studies have shown that the length of

natural pauses in human dialogue ranges from 0.62 to

0.77 seconds [13], and that delays longer than 2 seconds

during human-robot interaction make people feel frus-

trated [34]. In teleoperation, an operator requires time

to search through content or type utterances, so it can

This is a preprint manuscript.

The final publication is available at Springer via http://dx.doi.org/10.1007/s12369-015-0288-9

4

http://dx.doi.org/10.1007/s12369-015-0288-9


3 INTERACTION GUIDELINES 3.2 Initiative

be difficult to respond so quickly [10].

Our guidelines recommend that the operator react quickly

to the visitor. This includes being aware of the passage

of time and minimizing typing whenever possible. Many

features of our system (see Sec. 4) were developed to

support this guideline.

Topic-independent utterances Many content-rich utter-

ances can be classified under topics, such as “history of

Nara Park.” However, in natural conversation, people

often use phrases such as, “oh, really?”, “that’s right”,

or “thank you,” which do not fit into a specific topic.

We use the term ”topic-independent utterances” to re-

fer to short utterances for making responses which can-

not be classified as greetings, farewells, or topic-specific

informational content. These include backchannel ut-

terances such as “uh-huh,” “okay,” “yeah, I see,” and

so on.

Numerous studies have been conducted regarding back-

channel utterances, e.g. [40]. These utterances are usu-

ally necessary for a smooth dialogue. Some behaviors

serve to inform the speaker that the listener is pay-

ing attention and has understood what was said. They

also play a role in turn-taking. However, while the use

of these utterances may be intuitive and nearly uncon-

scious for human speakers, it was nonintuitive for our

operators to explicitly actuate them through a com-

puter interface.

In our pre-trials, most participants prepared only topic-

specific utterances, and they did not prepare topic-inde-

pendent utterances. This resulted in awkward, one-way

conversations where the robot seemed unresponsive to

things the visitor said. Our guidelines explicitly recom-

mend that operators prepare topic-independent utter-

ances, as their use can lead to smoother, more natural

interactions where the robot appears more responsive.

3.2 Initiative

In an ideal conversational situation, the dialogue liter-

ature would suggest that the robot and the visitor be

given equal footing in terms of taking control of the

conversation, and that a truly mixed-initiative system

would result in better interactions than a fully robot-

driven dialogue. However, there is an asymmetry in the

system – for the operator to type a response to an un-

expected question incurs a cost in terms of waiting time

which would not occur in face-to-face conversation.

When the visitor takes the initiative in a conversation,

it is likely that the conversation will move into topics

and questions that are not covered in the robot’s con-

tent store. There is an important trade-off here, simi-

lar to the “exploration vs. exploitation” trade-off found

in reinforcement learning systems – a small number of

such unprepared situations could be acceptable, and

indeed informative, as they provide an opportunity for

the operator to input new and useful content. How-

ever, too many unprepared situations will result in the

robot’s responses being unacceptably slow, as the op-

erator must type every response.

Consider this example from our preliminary tests. The

operator had created a rich set of utterance content

talking about the deer in Nara Park, and was prepared

to explain many things about their history, their life,

and their involvement in local festivals and traditions.

However, at the beginning of one interaction, the op-

erator took a long time to choose the first utterance.

During this time, the visitor tried to think of a question

to fill the silence, and asked “what is a good souvenir

to get from Nara?” Since this question was outside of

the set of prepared utterances, the operator needed to

type a response, making the visitor wait for several sec-

onds. After a long, awkward pause, the robot finally

answered, “how about sushi?”

Whereas entering a single utterance like this might be

considered valuable, because the operator was able to

increase the amount of content in the system, the visi-

tor continued to ask questions in this topic, e.g., “What

type of sushi is good,” and, “Where is a good shop to

buy it?” Each time, the operator needed to make the

visitor wait for several seconds to type a new response,

making the visitor more and more impatient.

Rather than letting the visitor drive the conversation so

far outside of the robot’s area of expertise, the operator

needs to take the initiative, directing the conversation

towards topics that it can speak about. While this does

not produce an ideal interaction based on equal footing,

directing the topic of conversation to the robot’s area of

expertise should result in higher responsiveness than an

open-ended conversation would. Similar strategies have

been proposed elsewhere, e.g. in [16].

Setting expectations In pre-trials, many participants de-

signed behaviors only to say “Hello” or “Please ask me

any question” at the beginning of an interaction, leav-

ing the visitor confused as to what to do. This often

forces the visitor to take the initiative without clearly

understanding the robot’s purpose.

People interacting with the robot for the first time will

not have clear expectations of the robot’s abilities or

role, so our guidelines recommend that the operator

start off each interaction by establishing the robot’s

role and abilities, as well as initiating the first topic

of conversation.

Initiating topics Whenever the conversation stops pro-

gressing smoothly, the robot should initiate a new topic

This is a preprint manuscript.

The final publication is available at Springer via http://dx.doi.org/10.1007/s12369-015-0288-9

5

http://dx.doi.org/10.1007/s12369-015-0288-9


4 SYSTEM IMPLEMENTATION

of conversation, rather than leaving this task to the vis-

itor. Doing so not only makes the visitor more comfort-

able because the robot is leading the conversation, but

it can also ensure that the topics are limited to the

robot’s prepared conversation content.

Minimize silence time If the robot makes the visitor

wait too long, the visitor may choose not to wait for

the robot to respond. As long pauses are uncomfortable,

the visitor will often jump to an unrelated topic during

long silences. Just as in the “responsiveness” guidelines,

the best way to avoid these situations is for the robot

to respond quickly and avoid long silences.

3.3 Interactivity

Many participants in our preliminary trials tended to

create long monologues for the robot. Such one-sided in-

teractions should be avoided, as visitors will feel bored

and lose interest in the conversation if they are only

listening and not participating. For example, one ut-

terance prepared for the robot said “Let me tell you

about Todaiji temple. Todaiji temple and the Big Bud-

dha were first established in 743. This was because, due

to earthquakes, hunger, and war, the emperor Shomu

thought that Buddhism might be help to save the coun-

try. It needed too many . . . ”. This was too long of a

one-sided explanation and boring for the people inter-

acting with the robot.

Asking questions To enable an interactive conversation

without exposing the robot to many unexpected ques-

tions, we recommend that the robot should actively ask

questions to the visitor. This allows the visitor to par-

ticipate in the conversation while the robot keeps the

initiative. An additional benefit of asking questions to

the visitors is that replies to the questions are often

predictable, so it is possible to prepare responses to ex-

pected replies.

For example, while the robot is explaining about the

Great Buddha statue, it might ask, “How tall do you

think the statue is?” instead of simply stating the statue’s

height in meters. Visitors will probably respond with an

estimate which is correct, too low, or too high, or they

will simply say they don’t know. It is straightforward to

prepare content to respond to each of these four cases,

e.g. for the case that the guess is too high, the opera-

tor could prepare as “Well, it is very tall, but it’s not

THAT tall!”

4 System implementation

In pre-trials, we observed that operators often did not

follow the guidelines when we only told them orally. For

example, some operators continued to type every be-

havior even after we told them “typing takes too much

time, so please use the existing behaviors”. Other op-

erators continued to make long explanatory behaviors,

even after we told them “please make behaviors short

so you can see people’s reactions and not make the in-

teraction boring”.

We thus designed a software system to assist opera-

tors in following the guidelines, for both content de-

velopment and teleoperation of the robot. The objec-

tives of this system were to minimize the effort and

search time of the operators during live teleoperation,

to streamline the processes of content development and

review/improvement of content, and to provide remin-

ders and assistive interfaces encouraging the operators

to follow the guidelines.

In order to support the operator’s tasks of content de-

velopment, teleoperation, and review of interactions,

the software system provides separate graphical inter-

faces for each of the following three phases in the de-

velopment process:

Design phase Operators prepare a basic set of content

to enable simple conversations when operation begins.

Until this basic content has been developed, it will not

be possible to begin gathering feedback through tele-

operation. Also, when a robot is in the field interacting

with real people, some basic level of conversational abil-

ity is necessary. Failed conversations due to insufficient

content preparation will generally be unacceptable.

Operation phase Operators teleoperate a robot in in-

teractions with real people using the content they have

prepared. These interactions need to be conducted at a

natural conversational speed for smoothness, and they

should strike a careful balance between exploring new

content (e.g. taking the time to type answers to new

questions) and presenting prepared content (which is

much faster to actuate).

Consolidation phase Operators improve content through

feedback from interactions. It is important to review the

quality of the interactions and identify areas where the

content base can be improved. This can be achieved by

reviewing a transcript of the interaction, watching video

of the interaction, and responding to system-generated

prompts about recommended content changes.
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Table 1 Main guidelines

Name Main guidelines For Design/Consolidation phase For Operation phase

Responsiveness

React to what the visitor says
during the interaction

(make responses,

change topics,

greetings at the end)

(A1)Make behaviors short

(A2) Write one idea

in one behavior
(A3) Make topic-independent
utterances

(A4) Use topic-independent
utterances
(A5) Watch and listen

to the visitor carefully

Initiative

Lead the interaction
(set expectations,

initiate topics,

minimize waiting time)

(B1) Design behaviors

in a flow
so the robot can lead
the conversation

(B2) Choose behaviors

smoothly at first

(B3) Avoid typing too much

(B4) Keep the conversation

focused on prepared topics

Interactivity

Help the visitor participate
in the interaction

by asking questions

(C1) Make questions and prepare

for the likely responses (C2) Proactively ask questions

Fig. 2 Operation view. The interface features a hierarchical
topic tree (a1), a flat list of all behaviors within the selected
topic (a2), a recommended list of behaviors to choose next
(a3), a list of behaviors which can introduce other topics (a4),
a list of topic-independent behaviors (a5), a tool for entering
new text and choosing gestures for a new behavior (b), and
a video feed from the robot’s eye camera which shows the
person interacting with the robot (c). )

Fig. 3 Consolidation view. The interface features a list of all
behaviors actuated during the selected interaction, includ-
ing icons marking behaviors which were entered, edited, or
flagged during teleoperation (a), a “wizard” panel showing a
custom interface for each consolidation task, such as editing a
behavior (b), a video panel for reviewing the interaction (c),
and a panel for selecting other past interactions (d).

4.1 Design phase

The primary tasks of the operator in the design phase

are to create, edit, and organize interaction content for

the robot. This content takes the form of “behaviors”

which can include both utterances and gestures.

Topic organization In our system, these can be orga-

nized into a structure of topics and subtopics.

Add new behavior wizard The system also provides a

wizard interface to guide the operator through the pro-

cess of creating a new behavior and categorizing it.

Based on feedback from the operators, we determined

a limit of 10 behaviors in one topic to be “too many” to

search and choose smoothly during interaction. Thus,
if a topic contains more than 10 behaviors, the system

suggests to divide it into subtopics. Keeping individual

behaviors short is also important for responsiveness, so

if an utterance is too long, the wizard suggests to divide

it into shorter behaviors. While our choice of 10 behav-

iors was determined informally, there is some similarity

to the “seven plus or minus two” limit in human cog-

nitive processing [25].

4.2 Operation phase

The Operation view, shown in Figure 2, enables the

operator to teleoperate the robot in conversational in-

teractions with people.

In many ways, this interface is similar to those used

in “Wizard of Oz” experiments [8,6,38], but in our sys-

tem several features have been specifically developed to

support the operator in teleoperating the robot quickly

and efficiently.
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4.3 Consolidation phase 5 EXPERIMENT

Basic interface The video stream from the robot’s cam-

era showing the visitors is shown in area (c). The opera-

tor can select topics in area (a1) and execute behaviors

in area (a2) by clicking on them. The operator can type

text to be spoken and then stored as a new behavior

for a robot in area (b).

Links Some interactions include behaviors that occur

in a predictable sequence. For example, after the robot

says “what’s your name?” its next utterance will of-

ten be, “nice to meet you!” The system records the

frequency of such transitions and uses this data to sug-

gest likely candidates for the next behavior in area (a3).

While this method is not accurate enough to directly be

used for automating the robot’s behaviors, it can help

to reduce the operator’s search time.

Topic shortcuts Certain key phrases are often used when

changing topics. For example, if the operator wanted to

start talking about the Great Buddha statue in Nara,

a behavior saying “So, have you gone to see the Great

Buddha yet?” would be a likely candidate. We allow

operators to identify such behaviors and mark them as

“shortcuts” to be displayed in area (a4). We have found

this to be quite useful for ending interactions smoothly.

Topic-independent utterances As described in Sec. 3.1,

we classify utterances such as “oh, really?”, “thanks!”,

or “yes, that’s true” as topic-independent utterances.

These behaviors tend not to belong to the context of

any particular topic, so they are shown in their own list

in area (a5). The behaviors in this list are created and

updated by the operator in the same way as all other

behaviors.

Auto filler When the operator is slow in choosing or

typing a behavior, the system helps to fill the delay

by automatically inserting conversational fillers such as

“hmm. . . ” or “please wait a moment” to avoid awkward

silences [34]. Details about our implementation of this

feature are explained in Sec. 5.2.7.

Memo button To help the operator remember any in-

teraction problems that occurred during operation, we

provide a “memo button” which marks that point in the

interaction for review during the Consolidation phase.

This button can be used when the operator would like

to add further explanation, improve the phrasing of

an utterance, improve the connection between expla-

nations, prepare related behaviors, fix the robot’s pro-

nunciation, or change its gestures. The point at which

the memo button was pressed is recorded and shown in

the Consolidation view.

4.3 Consolidation phase

After the end of every interaction, the system guides

the operator through a “consolidation” process of self-

evaluation, review of the interaction, and improving the

content based on that feedback (Figure 3). This process

is intended to help improve both the robot’s interaction

content and the operator’s operation technique.

Guideline checklist panel After each interaction, the

system first presents a dialog box, which asks the op-

erator to self-evaluate their performance on a checklist

of guidelines.

Consolidation procedure After this self-evaluation, the

Consolidation view is shown. The most recent interac-

tion is automatically selected, and the system prompts

the operator to watch the video of that interaction. Af-

ter watching the video, the operator is guided through

each of the consolidation tasks in sequence, and the

system offers possible actions for each task in area (b).

For example, if a new utterance was typed, the opera-

tor can add it as a new behavior, edit it, or ignore it.

If the memo button was pressed, the operator can add

a new behavior or edit an existing behavior.

Interaction selection panel In area (d), the operator

can choose an interaction to view, for cases where in-

teractions happen back-to-back with no time for review

in between.

Video In area (c), operators can watch a video of the

selected interaction. Operators tend to focus on opera-

tional tasks while controlling the robot, so reviewing a

video of the interaction helps the operator to step back

and watch the content and timing of the interaction

itself. It has been shown that operators can have an

impaired awareness of time during teleoperation tasks

[10].

Interaction Transcript Operators can see a transcript

of the robot’s side of the selected interaction in area

(a) in Fig. 3. Entries representing likely “consolidation

tasks” are highlighted, including new behaviors typed

during that interaction, behaviors that were edited, and

points where the memo button was pressed.

5 Experiment

We conducted a field experiment to evaluate the effec-

tiveness of the developed system and guidelines in the

context of the tourist information scenario explained in

This is a preprint manuscript.

The final publication is available at Springer via http://dx.doi.org/10.1007/s12369-015-0288-9

8

http://dx.doi.org/10.1007/s12369-015-0288-9


5 EXPERIMENT 5.2 Method

Section 1.4. For this experiment, we placed a robot in

a tourist information center in Nara, with the task of

explaining local sightseeing information to tourists.

5.1 Experimental design and predictions

In order to demonstrate the necessity and effectiveness

of our system and guidelines, we designed an experi-

ment to confirm two predictions.

First, we needed to validate our assumption that using

the guidelines would result in better interactions and

better interaction content. Thus, we proposed a first

prediction as follows:

Prediction 1 Operators with the proposed system and

guidelines will make better content and operate the

robot more effectively, resulting in a better overall im-

pression of the robot than in the case of operators

without the system or guidelines.

Next, supposing that the first prediction is supported,

we aimed to confirm whether the improvement is due to

the fact that the operator followed the given guidelines.

We found in our informal preliminary experiments that

operators do not tend to naturally follow the guidelines.

To confirm that our approach increases compliance with

the guidelines, the second prediction we tested was as

follows:

Prediction 2 Participants who are provided with the

proposed system and guidelines will also show behavior

that is more consistent with the guidelines.

To evaluate these two predictions, we conducted an

experiment comparing the performance of participants

who prepared content and operated the robot. We com-

pared the performance of two groups of participants:

one using our proposed system and guidelines, and one

using a baseline system without our proposed features

or guidelines. Each participant operated the robot in in-

teractions with real visitors at the tourist information

center.

5.2 Method

5.2.1 Settings

The experiment consists of two parts: preparation (the

Design phase in our proposed flow) and operation (iter-

ating through the Operation and Consolidation phases

several times). One day was spent on each part. Thus,

each participant took part in this experiment for two

days.

On the first day, the experiment was conducted at our

Fig. 4 Field experiment environment

laboratory, where the participants created an initial set

of content for the robot. This session lasted for six

hours. Participants were given one hour of instruction

on how to use the system, three hours to create interac-

tion content, and two hours to practice with the system

by teleoperating the robot by themselves.

On the second day, the experiment was conducted in

a tourist information center in Nara (Figure 4). The

participants operated the robot for four hours. In these

interactions, they presented information and answered

any questions that visitors had. Participants were given

breaks between the training and operation phases, and

due to the small number of visitors to the center, the

overall workload of the operators was relatively low.

The human-robot interactions at the tourist informa-

tion center were recorded using external video cameras

for later analysis. All operations of the operators, such

as sending commands to the robot or creating new be-

haviors, were also recorded with timestamps.

5.2.2 Scenario

Due to the limited amount of time allocated for this

experiment, we limited the range of conversation to a

single topic. We specified that the robot was to act as

a guide specializing in talking about the famous deer in

Nara Park, one of Nara’s major sightseeing attractions.

Its job was to talk with visitors and try to interest them

in the deer, as well as to answer any questions they had

about the deer. If visitors had questions outside of the

topic of deer, the robot was to direct them to the desk

staff instead of trying to answer every question itself.

5.2.3 Robot

In the experiment, we used the humanoid robot Robovie

R3. It has a human-like appearance with two arms (2*4

DOF), a head (3 DOF), and is 110 cm tall. Its head

has two eye cameras, a speaker, and a microphone.
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5.2 Method 5 EXPERIMENT

XIMERA software [19], was used for speech synthesis.

The robot is mounted on a mobile base, although loco-

motion was not used in this experiment.

5.2.4 Control software

The operators in our experiments controlled the robot

using the system described in Section 4, implemented

in Java and running on a Windows PC. The interaction

content created by the operator, including gestures and

utterances, was stored in a database. When the op-

erator chose a behavior for the robot to execute, the

contents of the behavior were sent to the robot, which

synthesized the utterance and executed the appropriate

gestures.

5.2.5 Participants

A total of 27 participants (23 men and 4 women, who

averaged 68.4 years old, s.d. 3.96) took part in our ex-

periment as operators. All were members of “Suzaku,”

a volunteer guide association in Nara. They each had

2-15 years of experience, and they were all currently ac-

tive as volunteer guides at popular sightseeing areas at

Nara at the time of the study. They had not previously

interacted with our robot and had not had any experi-

ence operating any kind of conversational robots.

Each participant provided their age and number of years

of experience as a guide, and because many of them

were not frequent computer users, we measured their

computer ability, in terms of typing speed and speed

of controlling a mouse. Based on this information, we

assigned participants to conditions in order to balance

these factors as closely as possible between conditions.

The participants were not directly compensated for their

participation in the experiment, but monetary compen-

sation was paid to the guide organization for their par-

ticipation in the study, and participation in our study

was then treated as part of their normal duties as a

member of that organization.

The visitors who interacted with the robot at the tourist

information center were not compensated in any way

for their participation. They were not told that the

robot was teleoperated, although they may have known

about the teleoperation via a public media announce-

ment made prior to the experiment. An assistant stand-

ing near the robot encouraged people to talk with it if

they appeared shy or hestitant, but the visitors were

not given any specific instructions, e.g. specifying that

they should limit their questions to the topic of deer.

Fig. 5 Simpler interface for without-assistance condition.

5.2.6 Conditions

We used a single-factor between-participants experi-

mental design, comparing operator performance in with-

assistance and without-assistance conditions, defined as

follows:

With-assistance In this condition, we provided the guide-

lines and the developed system to participants.

Without-assistance In this condition, we did not pro-

vide the guidelines or the features of the system which

were designed to support the guidelines. Instead, we

provided a basic system to allow them to enter content

and operate the robot, and we allowed them to freely

create and edit the content. The interface of this sim-

pler system is shown in Figure 5.

5.2.7 Procedure in each condition

The following points explain the differences and simi-

larities between the two experimental conditions.

Differences:

– Content entry: In the with-assistance condition,

participants used the “add new behavior wizard” to

create behaviors and organize them into topics. In

the without-assistance condition, participants cre-

ated behaviors by typing text into a simple list of

utterances. These utterances could be categorized

into topics, but none of the assistive features, such

as warnings about utterance length or the ability to

mark topic shortcuts, were provided.

– Operation interface: Of the features described in

Section 4.2, links, topic shortcuts, the topic-inde-

pendent utterance list, instances, and the memo but-

ton were not provided in the without-assistance con-

dition.

This is a preprint manuscript.

The final publication is available at Springer via http://dx.doi.org/10.1007/s12369-015-0288-9

10

http://dx.doi.org/10.1007/s12369-015-0288-9


5 EXPERIMENT 5.3 Measurement and Results for Prediction 1

– Consolidation: The Consolidation view and guide-

line checklist were not provided to participants in

the without-assistance condition. However, a log of

all utterances they had typed during teleoperation

was provided so they could easily add their typed

utterances to the list of behaviors, rather than typ-

ing them from memory.

– Video review: In the with-assistance condition,

the operator was actively prompted to watch the

videos, as described in Section 4.3. Participants in

the without-assistance condition were given video of

their interactions to watch if they wished, but they

were not actively asked to do so by the system.

Similarities:

– Conversational fillers: Automatic conversational

fillers were used in both conditions, as we have used

these in many studies and consider them to be nec-

essary [10]. The system started automatic conver-

sational fillers based on expected operation time -

when switching topics (detected when the operator

clicks within area (a1) in Figure 2) it is assumed

that the operation will be slow, as the operator must

read through the text of several utterances in the

new topic. When typing a new utterance (detected

when the operator clicks within area (b) in Figure

2), it is expected that operation time will be ex-

tremely slow. According to the expected operation

time, the robot said appropriate fillers, e.g. “please

hold on a second,” or “hmm. . . ,” in order to fill the

silence.

– Guidance: In both conditions, the experimenter

answered questions from the participants about how

to use the system. In the with-assistance condition,

a document explaining the guidelines was given to

the participants. The experimenter read through the

document with them and confirmed that the partic-

ipants understood the meaning of the guidelines.

– Gestures: Gestures were not used in this experi-

ment.

As factors such as computer experience, typing speed,

and age may affect the results of this experiment, we

balanced participants between conditions based on these

factors, from the questionnaire and computer ability

tests administered before the experiment. Table 2 shows

the average ages and typing and mouse usage test scores

for participants assigned to each condition.

5.3 Measurement and Results for Prediction 1

Our first prediction was that “operators with the pro-

posed system and guidelines will make better content

Table 2 Participants assigned to each condition

With-assistance Without-assistance
Age (s.d.) 69.3 (4.0) 67.5 (3.9)
Typing (s.d.) 62.2 (6.2) 69.4 (6.1)
Mouse (s.d.) 32.1 (2.0) 30.7 (2.0)

and operate the robot more effectively, resulting in a

better overall impression of the robot than in the

case of operators without the system or guidelines”.

We measured the overall impression of interactions be-

tween the robot and visitors in which two evaluators,

blind to the experimental conditions, watched videos of

the interactions and gave subjective quality ratings on a

continuous 100-point scale. This evaluation method was

chosen instead of directly asking visitors for their im-

pressions, due to the difficulty of getting consistent eval-

uations from first-time visitors; the robot is still novel

and an interaction with the robot is still fun for many

people, even with poor interaction content. Thus, we

decided to measure the overall impression from a third-

person perspective to provide more consistent evalu-

ations and enable better comparison between interac-

tions.

We explained the role of the robot to the evaluators and

asked them to rate how well it performed in its role as

a guide providing information about deer in Nara Park,

and how well it was able to engage in interactive con-

versation with the visitors. Evaluations were averaged

over the final three interactions for each participant.

To provide a consistent scale for the evaluators, we gave

reference definitions for 20-point increments, based on a

scenario where the evaluator, as an employer, is choos-

ing whether or not to hire the robot. In this scale, 100

is the best, 80 means that the evaluator feels that, as an

employer, she could pay the robot slightly more than

average, 60 points is normal, and the evaluator feels

that she could pay the robot slightly less than average,

40 is not good, and the evaluator feels she would not

pay the robot but she could employ him without pay,

20 points is bad, and the robot could be forgiven for

his bad actions by saying “ I’m training”, and 0 points

is unacceptable, where the evaluator felt she would not

hire him even if he worked for free.

We computed the Pearson correlation of the overall im-

pression scores between the two evaluators to be .645,

which we consider to be a good match. Figure 6 shows

the result of overall impression scores averaged between

the two evaluators. A one-way factorial analysis of vari-

ance (ANOVA) was conducted, and a significant main

effect was revealed (F (1, 25)=4.590, p = .042, η2 =.155).

Thus, overall interaction quality was shown to be sig-
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Fig. 6 Overall evaluations of interaction quality

nificantly better in the with-assistance condition, sup-

porting Prediction 1.

5.4 Measurement and Results for Prediction 2

We believe that Prediction 1 was supported as a result

of better compliance with our guidelines. To confirm

this, we evaluated our second prediction: “participants

with the proposed method will show behavior that is

more consistent with the guidelines than participants

without the system or guidelines.” To evaluate this pre-

diction, we analyzed the degree to which each partici-

pant followed each of the guidelines. We evaluated each

of the eleven guidelines shown in Table 1 and compared

the results between the two experimental conditions.

As the number of interactions conducted by each par-

ticipant varied from day to day, data analysis was per-

formed only on the final three interactions conducted

by each participant.

(A1) Make behaviors short: prevent operators from en-

tering long utterances which could result in boring ex-

planations or one-sided interactions. We evaluated the

average length of utterances prepared by each partici-

pant, measured by the number of Japanese characters.

Figure 7 shows the result of length of utterances cre-

ated. A one-way factorial ANOVA was conducted, and a

significant main effect was revealed (F (1, 25) = 11.743,

p = .002, η2 = .320) Length of utterances created was

shown to be significantly shorter in the with-assistance

condition.

(A2) Write one idea in one behavior: When multiple

topics are combined into a single behavior, it can seem

that the robot is driving the conversation in a one-sided

way, rather than reacting to the visitor. So we recom-

mend that operators should prepare behaviors limited

only to a single idea. To evaluate whether participants

Fig. 7 Length of utterances prepared

followed this guideline, we counted the average num-

ber of distinct ideas per behavior for each participant.

In contrast with our preliminary trials, this was not a

problem in our comparison experiment. Fewer than 1%

of behaviors created in either condition contained more

than one idea or topic (0.43% in the with-assistance

condition vs. 0.25% in the without-assistance condi-

tion). A one-way factorial ANOVA was conducted, and

no significant main effect was revealed (F (1, 25) = 0.10,

p = n.s.) These results showed that operators of both

conditions made almost all behaviors with one idea. We

think that it is because they only talked about one

topic, deer, in this comparison experiment. Thus we

did not see the same problem which occurred in our

pre-trials, where the robot presented a large amount of

content on multiple topics.

(A3) Make topic-independent utterances: As described

in Sec. 3.1, we have found topic-independent utterances

to be important for making interactions reactive and

smooth. In our pre-trials, many operators prepared no

such utterances, resulting in awkward interactions. As

a measurement, we evaluated the number of partici-

pants who made at least one topic-independent utter-

ance. The number of operators who made at least one

topic-independent utterance was 13 out of a population

of 14 in the with-assistance condition, and 6 out of a

population of 13 in the without-assistance condition.

A Chi-squared test revealed a significant difference be-

tween conditions ( χ2(1) = 4.990, p < .05). Thus, signif-

icantly more operators in the with-assistance condition

created topic-independent utterances.

(A4) Use topic-independent utterances: Our guidelines

also recommend using topic-independent utterances dur-

ing operation (not only creating them at design time).

Note that this can be measured independently of A3,

because even if topic-independent utterances are not

prepared beforehand, operators can still use them in
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Fig. 8 Number of topic-independent utterances used

conversation by typing them in on the fly. We evalu-

ated the number of topic-inde-pendent utterances used

during interaction.

Figure 8 shows the number of topic-independent ut-

terances used. The Kolmogorov-Smirnov test was per-

formed to check the normality of the number of topic-

independent utterances used; the test indicated that the

numbers of topic-independent utterances in both condi-

tions were not normally distributed. Therefore, a Mann-

Whitney U test was conducted instead of ANOVA. A

significant main effect was revealed with p < .05, U=30.

Thus, these results show that participants in the with-

assistance condition used significantly more topic-indep-

endent utterances than participants in the without-assi-

stance condition.

(A5) Watch and listen to the visitor carefully: In our

pre-trials, the operator sometimes explained about many

points rapidly without leaving time for the visitors to

make any response. To encourage responsiveness, our

guidelines remind the operator to listen carefully and

quickly react to what the visitors say. To evaluate each

participant’s responsiveness, we measured the average

wait time between a visitor speaking and the response

from the robot. Auto-fillers such as “um. . . ” were not

counted as responses. Wait time was averaged across

the three interactions.

Figure 9 shows the average wait time for visitors during

an interaction. A one-way factorial ANOVA was con-

ducted. A significant main effect was revealed ((1, 25) =

10.193, p < .01, η2 =.290), showing that operators in

the with-assistance condition were more responsive and

made the visitors wait less.

(B1) Design behaviors in a flow so the robot can lead

the conversation: We saw in our pre-trials that opera-

tors were given many questions from visitors, and we

observed that it can take a lot of time to search for an

answer, during which time the visitor is made to wait.

Fig. 9 Average wait time

Fig. 10 Number of robot-initiated topics during operation

To avoid such delays, we proposed that operator should

lead the interaction. To evaluate how well the operator

led the interaction, we evaluated the number of robot-

initiated topics during each interaction. (e.g. a robot

starts to talk about a new topic, like “ let’s talk about

what the deer eat”, or a robot asks a question about a

new topic “ Do you know how many deer are in Nara

park?”)

Figure 10 shows the average number of times that par-

ticipants initiated new topics per interaction. A Kolmo-

gorov-Smirnov test performed to check the normality of

the number of new topics initiated per interaction indi-

cated that they were not normally distributed. There-

fore, a Mann-Whitney’s U test was conducted instead

of ANOVA. A significant main effect was revealed (p <

.05, U =27) showing that participants in the with-assis-

tance condition initiated significantly more new topics

than those in the without-assistance condition.

(B2) Choose behaviors smoothly at first: At the start of

an interaction, before clear expectations for the content

of the dialogue have been established, there is a risk

that the visitor will take the initiative and guide the

topic of conversation far outside of the intended topic

of focus. Our guidelines thus recommend that the oper-

ator establish the topic of conversation quickly, without
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Fig. 11 Average time before the robot or visitor talks about
deer

Fig. 12 Average number of behaviors typed per interaction

allowing long silences. To evaluate how well operators

followed this guideline, we measured the average time

from the beginning of the robot’s first utterance in an

interaction until the first utterance from the robot or

visitor regarding deer (the target topic).

Figure 11 shows the average time before the robot or

visitor talked about deer. A one-way factorial ANOVA

revealed no significant difference between the two con-

ditions.

(B3) Avoid typing too much: When content has not

been prepared to cover a situation, the operator must

type a new utterance, a slow process that makes the vis-

itor wait. We counted the total number of utterances

typed by the operator in each interaction and aver-

aged this over the three analyzed interactions for each

participant. Figure 12 shows the number of typed re-

sponses per interaction. The Kolmogorov-Smirnov test

was performed to check the normality of number of

typed responses; the test indicated that numbers of

typed responses in both conditions were not normally

distributed. Therefore, a Mann-Whitney U test was

conducted instead of ANOVA. A significant main ef-

fect was revealed (p < .01, U = 155).

(B4) Keep the conversation focused on prepared top-

ics: When the conversation moves to a topic for which

content has not been prepared, the operator must type

a new utterance. This is usually quite time-consuming

and makes the visitor wait, so our guidelines recom-

mend keeping the conversation focused on prepared top-

ics. We evaluated this guideline by counting the num-

ber of times the operator used two or more behaviors

to talk about something aside from the prepared topic,

since at least one behavior is necessary to respond to

any off-topic question.

This evaluation showed that off-topic diversions were

successfully avoided by 14 out of 14 participants in

the with-assistance conditions, and 9 out of 13 in the

without-assistance condition. A chi-squared test revealed

a significant trend between conditions (χ2(1) = 1.913,

p < .10). Two of the four operators who made off-topic

diversions were asked questions about the robot by visi-

tors. These operators answered to the questions by typ-

ing some behaviors, and the topic continued for a few

turns. The other two operators voluntarily chose to type

behaviors, in order to make personalized conversation

with visitors, but the conversation drifted away from

the target topic. All of these interactions included long

silence time.

(C1) Make questions and prepare for the likely responses:

One way for operators to make conversations more in-

teractive and interest visitors is by asking questions

about informational content, rather than simply pre-

senting statements about it. This helps to maintain in-

teractivity while the robot is leading the interaction. To

evaluate this point, we counted the number of operators
who made at least one question behavior.

The number of operators who made one or more ques-

tion behaviors was 14 out of a population of 14 in the

with-assistance condition, and 4 out of a population of

13 in the without-assistance condition. A chi-squared

test revealed a significant difference between conditions

(χ2 (1) = 11.590, p < .01), showing that significantly

more operators in the with-assistance condition made

question behaviors for visitors.

(C2) Proactively ask questions: To confirm that oper-

ators not only made questions but also used them, we

counted the average number of questions asked by the

robot to visitors per interaction.

Figure 13 shows the number of questions asked by the

robot per interaction. The Kolmogorov-Smirnov test

was performed for checking the normality of number

of questions; the test indicated that numbers of ques-

tions in both conditions were not normally distributed.
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Fig. 13 Number of questions asked by the robot per visitor

Therefore, a Mann-Whitney U test was conducted in-

stead of ANOVA. A significant main effect was revealed

(p < .01, U =6), indicating that significantly more ques-

tions were asked to visitors in the with-assistance con-

dition.

Thus, significant results were obtained for 9 of the 11

guidelines showing that participants in the with-assis-

tance condition were more likely to follow the recom-

mendations of the guidelines in the with-assistance con-

dition than in the without-assistance condition, sup-

porting Prediction 2. Summarized results for all eleven

guidelines are shown in Table 2.

5.5 Who was more or less successful?

We further analyzed the results to gain a deeper un-

derstanding of the factors affecting interaction quality.

Figure 14 shows the interaction quality scores of all par-
ticipants in descending order. The color represents the

condition of each participant. The top five, with scores

around 80 points, were all in the with-assistance condi-

tion.

The best interactions followed the proposed guidelines

well. For instance, the example below shows the robot

leading the interaction by asking a question with pre-

pared responses:

Robot: Do you know how many deer are in Nara

park? (leading with a question)

Visitor: Hmm, how many? ... maybe 500?

Robot: More than that. (prepared response)

Visitor: How many?

Robot: In Nara Park, there are 1200 deer. 25%

are male, 75% are female, and 10% are children.

The robot did not make the visitor wait, because all of

the situations were expected, and thus the contents for

the robot’s responses had been prepared and could be

actuated quickly.

In contrast, a few participants in the without-assistance

condition performed very badly. They typically made

visitors wait a lot, because of failure in leading the in-

teraction. This is one example of such failure:

Robot: Where are you from?

Visitor: I’m from Yamato-Koriyama.

Robot:(5 seconds passed because the operator

was typing) That’s nearby.

Robot: Um,. . . please wait (the operator is typ-

ing, and 17 seconds passed). When will their

goldfish festival be held?

The robot asked a question, but had not prepared for

the response. What is worse, the operator made the vis-

itor wait and started to deviate from the topic of con-

versation. Probably the input from the visitor elicited

the operator to make the response. It would be much

easier to respond in a face-to-face interaction, but it was

not easy when he was teleoperating the robot, because

typing took so much time. The guidelines for reaction

time, silence time, and setting expectations were pre-

pared specifically to prevent situations like this.

While the guidelines helped prevent participants from

getting into such awkward situations, it is notable that

the majority of participants in both conditions had scores

around 50. Our observation is that some participants

were very quick learners, and even in the without-assis-

tance condition, several participants naturally discov-

ered and used techniques such as those recommended in

the guidelines. Top participants in the without-assistance

condition successfully used topic-independent utterances

and took initiative in the conversation by having the

robot ask questions.

By contrast, some of the with-assistance participants

reported that the guidelines and system were too com-

plex. They were required to learn a complex software

application as well as pages of guidelines, with only a

few hours of studying and very little practice. Some

with-assistance participants did not succeed in fully fol-

lowing the guidelines, and typically failed to respond to

what visitors said, which seemed to be due to excessive

cognitive load. Participants in the other condition had

a simpler system and so had more free time to think

creatively about how to create appropriate content. We

expect that the proposed guidelines and system would

have provided better performance if we provided more

time for training and practice.
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5.6 How was the quality of the information provided by the robot? 5 EXPERIMENT

Table 3 Summary of evaluation results. Standard deviations are shown in parentheses.

Guideline Measurement With
Assistance

Without
Assistance

Significance

Overall

Interaction quality Scores from evaluators 65.75 (17.11) 53.54 (14.71) p <.05

Responsiveness

(A1) Make behaviors short Length of utterances prepared 20.37 (4.51) 33.01 (13.00) p <.01

(A2) Write one idea in one behavior Percentage of behaviors containing
more than one idea

0.43% 0.25% n.s.

(A3) Make topic-independent utter-
ances

Number of participants who made
at least one topic-independent utter-
ance

13 of 14 6 of 13 p <.05

(A4) Use topic-independent utter-
ances

Number of topic-independent utter-
ances used

3.14 (1.98) 1.05 (1.78) p <.05

(A5) Watch and listen to the visitor
carefully

Average wait time 5.24s (2.87) 10.71s (5.67) p <.01

Initiative

(B1) Design behaviors in a flow so
the robot can to lead the conversa-
tion

Number of robot-initiated topics
during operation

3.22 (1.37) 1.07 (1.69) p <.05

(B2) Choose behaviors smoothly at
first

Average time before robot or visitor
talks about deer

17.0s 20.9s n.s.

(B3) Avoid typing too much Number of behaviors typed per in-
teraction

0.19 (0.41) 1.56 (1.47) p <.01

(B4) Keep the conversation focused
on prepared topics

Number of participants who success-
fully avoided off-topic diversions

14 of 14 9 of 13 p <.1

Interactivity

(C1) Make questions and prepare for
the likely responses

Number of participants who made at
least one question utterance

14 of 14 4 of 13 p <.01

(C2) Proactively ask questions Number of questions asked by the
robot per visitor

3.27 (1.21) 0.55 (0.86) p <.01

Fig. 14 Interaction quality of each participant

5.6 How was the quality of the information provided

by the robot?

We counted the number of utterances containing in-

formational content that were used by each operator.

On average, 13.0 unique informational utterances were

used per interaction in the with-assistance condition,

compared with 6.1 in the without-assistance condition

(Fig 15). A one-way factorial ANOVA revealed a signif-

icant difference between the two conditions (F (1, 25) =

13.278, p = .001, η2 =.347))

We also counted the number of visitor’s utterances show-

ing surprise or interest (e.g. “Wow!”, or “Oh, really?”)

per interaction (Figure 16). We conducted an ANOVA

revealing a significant main effect (F (1, 25) = 5.69,

p = .025, η2 =.185). We interpret these results as indi-
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6 DISCUSSION 6.2 Guidelines

Fig. 15 Number of utterances containing informational con-
tent

Fig. 16 Number of utterances showing surprise or interest
from visitors

cating that operators in the with-assistance condition

were able to conduct more interesting conversations.

6 Discussion

6.1 Contributions of Individual Components

We introduced many techniques and guidelines at once

in this study, and it is not clear to what extent each

element contributed to performance. The main focus of

this study was to determine whether non-engineering

domain experts could effectively be included in the con-

tent development process at all, so we did not do a rig-

orous analysis of each system component.

The contributions of the software system and of the

guidelines cannot be meaningfully separated, as the pur-

pose of the software is to assist users in following the

guidelines. In the end, participants following all guide-

lines generally received high evaluation scores.

Aside from explicitly supporting the guidelines, one ma-

jor contribution of the software system appeared to be

the video playback functionality. After watching videos

of their operation, participants made a noticeably greater

effort to operate the robot quickly and minimize visitor

wait time. We attribute this to greater self-awareness,

which enabled the operators to more effectively use

their intuition and implicit communicative knowledge

in interactions.

The effectiveness of other functionalities, such as re-

minding operators of the guidelines, appeared to be

most effective for the less capable operators, but possi-

bly annoying to more capable operators. We attribute

this to the idea that greater fluency in using the tele-

operation system enables a higher level of immersion

in the interaction, which in turn frees the operators

to focus on the interaction itself and use their implicit

knowledge. Operators who are unable to use the system

fluently need to focus on the mechanics of operation and

are not immersed in the interaction. In these cases, the

guidelines have a more pronounced effect, as they can

bootstrap the iterative content development process by

assisting an operator in conducting a smooth interac-

tion despite this lack of fluency.

The “Topic-independent utterance list” was quite use-

ful, enabling operators to react to the customers quickly

in many situations. Other features, such as the auto-

matic links and topic shortcuts, were not so important

for small data sets like those used in our experiment,

but we expect that their value will increase for larger

sets of content and longer periods of operation (since

the links are built based on interaction history).

6.2 Guidelines

The set of guidelines developed in this study was specif-

ically chosen for our scenario of short-term interactions

providing information to tourists. We believe that most

of these guidelines should be universally applicable, as

they reflect general phenomena such as natural turn-

taking behavior. However, some guidelines such as “proac-

tively ask questions” or “make behaviors short” may be

less applicable in some situations, depending on the na-

ture of the task and on cultural and social factors.

6.3 Gestures

Although the capability of combining gestures and ut-

terances to form behaviors was an important consider-

ation in our system design, the use of gestures was not

explored in depth in this study. Our system enabled

operators to use specific pre-designed gestures such as

emphasizing a point, waving goodbye, or pointing to a

poster near the robot, but it included no capacity for

generating new poses and gestures for the robot. Tech-

niques for enabling operators to use gestures effectively

This is a preprint manuscript.

The final publication is available at Springer via http://dx.doi.org/10.1007/s12369-015-0288-9

17

http://dx.doi.org/10.1007/s12369-015-0288-9


References

and create new gestures could be interesting topics for

future work.

6.4 Limitations

This study was relatively small-scale, as each partici-

pant had only 3 hours for content creation and 3.5 hours

for operation, covering only one topic. We expect that

our system and guidelines would be even more effective

on a larger scale, as more operation time would mean

participants would be trained better. While a larger set

of content would make the operator’s task more diffi-

cult, many of the features proposed in our system are

mechanisms designed to support large content sets.

Whereas six hours could be considered to be quite long

for a training period, one of the reasons for this long

practice time is that the participants were elderly, and

they needed more time to type content and to learn

how to use the system than younger people would. We

think younger people would need less time for training

and practice on Day 1, and it may be possible to pre-

pare more efficient ways to teach elderly people to use

the system or explain the interaction guidelines.

Another limitation is that this study only focused on

making dialog. We did not consider about robot loco-

motion, manipulation, or perception. In this paper we

have focused on creating information content, and the

effects of these tasks are beyond the focus of this pa-

per. But considering of them would be an interesting

future work in this direction of research. For example,

when locomotion is used, the robot’s current location

could be used as additional context for predicting the

behaviors shown in the “Links” area of the operation

view.

6.5 Applicability to other domains

This study demonstrated that it is possible for domain

experts who are not engineers or programmers to create

interaction content for a conversational robot through

an iterative process of content development and teleop-

eration. While this study focused on guiding tourists as

a target application, we can consider many other areas

where domain experts would be valuable in creating in-

teraction content for a robot. Knowledge from domain

experts might be necessary for robots working in a shop

talking with customers and selling products, in a hospi-

tal or care home talking with patients and keeping them

company, or in an educational setting helping students

learn.

These applications differ slightly in their nature. The

communicative knowledge needed by a sightseeing guide

robot centers around storytelling, engaging listeners,

and reacting to what they seem be interested in. A sales

or education robot would have different strategies and

goals for its interactions. However, requirements such

as smoothness of the interactions and responsiveness

to the customer or student would be similar, as would

be the need for a basic level of interaction quality in

order to bootstrap the iterative procedure of teleop-

eration and content design. Thus, we expect that the

developed guidelines and system should be useful for

such applications.

7 Conclusion

This paper addressed the challenges of using domain

experts to create interaction content for conversational

robots. To enable non-robotics domain experts to create

content using their implicit communicative knowledge,

we proposed an iterative process using teleoperation of

the robot in real interactions to provide feedback for

improving conversational content.

We presented a system and a set of design guidelines to

support domain experts in creating, using, and improv-

ing conversational content through teleoperation. We

then evaluated how well domain experts could make

conversational content and operate a robot using our

proposed guidelines and system through a field exper-

iment in a real tourist information center. The results

confirmed that with our system and guidelines helped

operators in several ways: they were able to provide

more timely, natural responses to visitors; they did not

need to type as many new utterances during interac-

tions, resulting in less wait time for visitors; and they

were able to conduct better interactions overall. We be-

lieve these findings will be valuable as conversational

robots are developed for new application domains.
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