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Abstract—This study provides an in-depth analysis and practical 

solution to the problem of designing and implementing a human-
robot team for simple conversational interactions. Models for 
operation timing, customer satisfaction and customer-robot 
interaction are presented, based on which a simulation tool is 
developed to estimate fan-out and robot team performance. 
Techniques for managing interaction flow and operator task 
assignment are introduced. In simulation, the effectiveness of 
different techniques and factors related to team performance are 
studied. A case study on deploying multiple robots in a shopping 
mall is then presented to demonstrate the usefulness of our study in 
helping the design and implementation of social robots in real-
world settings.  
  

Index Terms—Human-robot interaction, modeling, simulation, 
social robots   

I. INTRODUCTION  
ecently, there has been much research into using social 
robots to communicate with people in real world 
environments. Social robots have been placed in 

museums [1] – [3], exhibition expos [4], reception areas [5], 
shopping malls [6, 7], transit stations [8, 9] and other public areas 
[10]. As these various experimental applications have shown, 
social robots have a promising future of not only attracting 
people by their novelty, but also being able to provide useful and 
reliable services in our daily life.   

Supervision by a human operator is necessary when  
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deploying social robots in the real world in order to: 1) ensure 
safety of both humans and the robot, 2) deal with unexpected 
situations, and 3) enrich the content of social interactions 
between humans and robots by incorporating an operator’s 
knowledge and common sense. As the ever-increasing 
autonomy of robots enables more tasks to be done by 
automation, the operator’s workload will be reduced, enabling 
multiple robots to be controlled using the operator’s free time.  

Choosing the proper configuration of a teleoperated social 
robot team is often difficult, because different factors affect the 
team dynamics, such as the level of robot autonomy, the time 
required for teleoperation tasks, and the number of robots to be 
used. Because awkwardly acting robots may give a negative 
impression to customers and bystanders [11], it is not desirable 
to try robot deployments with arbitrary settings in a real-world 
application – this would carry a high risk of losing customers 
in the long term. Therefore, it is necessary to predict the 
performance of a human-robot team prior to deployment.   

The purpose of this study is to present a modeling technique 
for human-robot teams conducting short-term interactions, and 
to provide practical techniques and methods to optimize team 
performance. A previous study [12] gives a detailed description 
about interaction modeling, based on which we address more 
detail about implementation issues and further analysis in this 
paper. Techniques related to managing interaction flow and 
operator task assignment will be introduced. Then, we will 
discuss how simulation can be used to analyze the effects of 
these techniques and other factors by estimating fan-out and 
team performance under different conditions. Finally, a case 
study on deploying multiple robots in a shopping mall is 
presented to demonstrate the usefulness of our study in helping 
the design and implementation of social robots in real-world 
settings.  

II. RELATED LITERATURE  

The overall theme of this paper is to discuss two common 
issues existing in the study of social human-robot interactions. 
One issue is how to evaluate and improve the team 
performance of multiple social robots; the other is how to 
practically implement a human-robot team for social 
interactions based on current state-of-the-art technologies. This 
section is devoted to providing a brief survey about each of 
those issues. The first part discusses metrics for evaluating 
human-robot teams in previous studies, and the second part 
discusses the existing technologies which provide useful hints 
for the implementation of our system.  
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A. Metrics on Multi-Robot Control and Social HRI  

Studies of human-robot team performance are related to 
various topics, such as situational awareness [13], adjustable 
autonomy [14] and mixed-initiative control [15]. For predicting 
team size and evaluating performance, metrics such as fan-out 
[16, 17], neglect tolerance [18] and interaction efficiency [19, 
20] have been studied.  

The “fan-out” metric represents the theoretical upper 
boundary for the number of robots that one operator can control 
based on aggregate task metrics such as interaction time and 
neglect time. In the problem scope of social robots, we find that 
by considering human factors such as a customer’s frustration 
with delays in the robot’s responses enables us to create a more 
refined model of fan-out for a human-robot team performing 
social interaction tasks. Pioneering studies on teleoperation of 
multiple social robots have been conducted, wherein metrics 
such as situation coverage and critical time ratio [21, 22] are 
introduced to measure task difficulty for a robot team in 
conversational interactions.  

Besides quantitative evaluations, extensive studies have been 
conducted on the social psychological aspect of human-robot 
interactions. Dautenhahn [23] and Duffy [24] studied the effect 
of appropriate humanlike qualities applied to social robots. 
Sabanovic et al. [25] suggest evaluating social robots based on 
observational analysis, and proposed several salient factors for 
designing human-robot interaction, such as gaze, scaffolding and 
rhythmicity.   

Determining an appropriate metric for evaluating social 
“effectiveness” is difficult, since the purpose and functionality 
of social robots differ in various applications [26], but a 
quantitative metric is still necessary for comparing the 
performance of a social robot team on various conditions as 
inputs to the system. This study will propose a metric based on 
waiting time of users in conversations with robots, and 
demonstrate its usefulness through experiments and a field trial.  

B. Technologies for Social HRI  

While rapid progress has been made to improve robot 
intelligence, the lack of autonomy is still a major bottleneck in 
achieving more intelligent robots for social interactions. For 
example, a speech recognition system that performed with 
92.5% accuracy in 75dBA noise [27] achieved only 21.3% 
accuracy in a real-world environment [9]. Hence, under current 
state-of-the-art technology, we still need to adopt human 
perception and intelligence to take control or recover from 
failures of automation.  

Techniques have been developed to enable smooth 
transitions between automation and operation, or to enable 
robots to act less awkwardly under automation failures. A 
method called proactive timing control [21, 22] was developed 
to proactively adjust robot behaviors to delay the chance of 
automation failure before the operator is assigned. 
Conversational fillers [11] were studied to mitigate human 
frustration when robots cannot respond immediately in some 
conversations.   

The studies above have provided us valuable clues on how to 
manage social interactions using semi-autonomous robot teams. 
In this study, we will discuss the usefulness of such 
technologies in managing waiting times of users during 
conversations with robots, and also introduce other 
technologies such as audio buffering to improve robot 
performance by reducing waiting time.  

III.  HUMAN-ROBOT INTERACTION MODEL AND METRIC  

Fig. 1 illustrates the human-robot interaction model. We 
study human-robot teams consisting of a single operator and a 
certain number of semi-autonomous robots to conduct dialog-
based social interactions with “customers”. We use the term 
“customer” to refer to a person who engages in social 
interaction with a robot. This term has some similarity with 
Scholtz’s role of “peer” [28] in that it represents the human side 
in a face-to-face interaction with a robot. But it differs from the  
“peer” or “teammate” role in that the human and robot are not 
collaborating to achieve a single goal; rather, the human’s role 
as a service receiver in the interaction, in contrast to the robot’s 
role as a service provider.  

One thing to mention about our overall model is that here we 
use the term “Social HRI” to refer to human-robot interaction 
through short-term conversations. In terms of Newell’s notion 
of bands of cognition [29], these short-term interactions 
correspond to the “cognitive band” of cognition, where we are 
concerned with individual utterances and speech acts for 
interactions that last for tens of seconds. Longer-term 
interactions in the “rational band” (minutes to hours) or the 
“social band” (days to months) will require additional 
considerations beyond the models presented in this study.  

 
Fig. 1. Human-robot interaction model  
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A. Operator Model  

In study [30], a human operator is modeled as a server in a 
single-server queuing network. In this paper, we model the 
operator as having the same role, whose job is to control robots 
in the situations which cannot be handled autonomously, or 
when a high risk of error exists in automation. To perform an 
operation, the operator should acquire situation awareness 
about the interaction between the customer and robot, and give 
proper inputs to control robot behaviors.  

As in studies [17], [20] and [31], operation time (referred to 
as interaction time) is used to evaluate the performance of a 
human-robot team, which generally consists of the time for (a) 
gaining situation awareness, (b) problem solving (or decision 
making) and (c) command expression via the interface. In [32], 
the process of situation awareness is further defined by levels 
representing perception of elements in current situation, 
comprehension of the current situation, and projection of future 
status. But as mentioned in [17], these elements of interaction 
time occur mostly in the user’s mind and are therefore difficult 
to measure directly.  

To model the activities of the operator in a measurable way, 
we propose a simplified model which divides an operation into 
“listening” and “actuation” time as in (1). Listening time 
corresponds to the time for the operator to recognize the 
customer’s request from audio data, and actuation time 
corresponds to the time from the end of listening to the end of an 
operation. Notice that listening time may not be equal to the time 
for situation awareness, and actuation time does not only 
represent the time for command expression, because problem 
solving can happen at any time during an operation.  

  
    (1)  
   
 The benefit of this modeling is that each part of operation can 
be measured or estimated separately, and then a reasonable 
estimation of total operation time can be calculated based on the 
estimates of each part. Section IV-C will give an estimation 
method for listening time based on the customer’s utterance time, 
and Section IV-D will discuss the estimation of actuation time 
when various types of input methods exist in the operation 
interface.  

B. Customer-Robot Interaction Model  

    A customer-robot interaction progresses by the exchange of 
requests and responses between a customer and a robot. Previous 
work shows that conversational human-robot interactions tend to 
follow certain patterns [22], providing the possibility of 
predicting the next step in advance based on the current state of 

a conversation. As illustrated by Fig. 2, we model the customer-
robot interaction by dividing an interaction into phases 
representing unique states in an interaction:  
• Non-Interactive Phase: This phase is when the robot is 

in an idle state and waiting for customer arrival.  
• Pre-Critical Phase: This is the phase when a customer 

arrives and the interaction can be handled automatically. 
It includes automatic detection of customer arrival and 
behaviors like greeting or making a self-introduction by 
the robot.  

• Critical Phase: This phase is when an operator’s attention 
is needed because of a high risk of error by automation. 
This phase starts when it is the customer’s turn to speak, 
because the operator is needed from that time in order to 
recognize the customer’s request and make a correct 
response.  

• Post-Critical Phase: This phase is when the operator’s 
control is finished, and the automated system handles the 
execution of behaviors to finish the interaction.  

    The key concept in this modeling is that an interaction can 
be divided into Critical and Non-Critical phases, determined 
by whether or not the operator’s attention is needed. Using such 
definitions, we can manage the teleoperation of multiple robots 
by allocating the operator only to the robots in critical phase, 
which will be explained in detail in Section 4.  

C. Customer Satisfaction Model In this study, we define 
“customer satisfaction” as a quantitative evaluation of the 
quality of simple short-term conversations between customers 
and robots from the customer’s perspective. Previous research 
shows that customers get frustrated while waiting in a 
conversation with a robot, even if a correct response is 
eventually made by the robot after certain amount of time [11]. 
Based on this finding, we model customer satisfaction as a 
function of waiting time.  

According to the customer-robot interaction model, there are 
two waiting times for a customer in an interaction: waiting for 
the robot to finish speaking in the pre-critical phase, which we 
designate as ( ) , and waiting for the robot to respond after 
the customer has asked a question in the critical phase, which 
we designate as ( ). We hypothetically model the drop in 
customer satisfaction as a linear function of wait times before 
and after the question as in (2), where satisfaction (S) has an 
initial value S0 and drops with rates  and  during wait times 
before ( ) and after ( ) a question.  
  

    (2)  
  

 
Fig. 2. Customer-robot interaction phases  
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 This model is defined for the ask-reply type of short-term 
dialogs as defined in the previous sub-section, and is based on 
an assumption that a correct and socially acceptable response 
can be made by the operator’s manipulation. The parameters  
and  reflect the different drop rates of satisfaction, which can 
be affected by various psychological and environmental factors 
related to the type of interaction. Among these factors, we find 
the context (or topic) of conversation is an important factor in 
determining  and , reflecting the general complexity of 
questions and affecting the customers’ expectations toward the 
robot’s response time. In Section V, we will measure the 
parameter values from data collection with two different 
contextual settings, and we will discuss the difference of the 
parameters in reflecting the complexity of the two conversation 
contexts.  
    Regardless of conversation context, we believe that   in 
general, because the time waiting for an answer is more critical 
than the time waiting before asking a question, causing more 
anxiety and frustration to the customer. This hypothesis, along 
with the validity of the linear model, will also be verified in 
Section V.  

D. Situation Coverage Metric  

Situation coverage was discovered to be a very important 
metric regarding the performance of teleoperated social robots in 
previous studies [21, 22]. It is defined as the percentage among 
all interchanges between customers and robots, for which 
appropriate behaviors are prepared for the robots to respond.  
    A situation is “covered” when the robot has a built-in behavior 
to respond to the customer’s request, and such a behavior can be 
triggered immediately by the operator using corresponding 
inputs through the UI, such as by clicking a button. A situation 
is “uncovered” when there is no such built-in behavior, which 
requires the operator to improvise a response using lower-level 
inputs, such as by typing an entire phrase for the robot to speak. 
Thus, responding to uncovered situations generally takes much 
longer than responding to covered situations.  
    Situation coverage results from interactions between a 
customer and a robot, and it influences the robot’s response 
speed by determining the efficiency of inputs on the operator’s 
side. A higher level of situation coverage is always preferable 
for an application, because in such case a larger proportion of 
operations can be performed quickly, resulting in shorter 
customer wait time on average and enabling more robots to be 
operated simultaneously. But even for a well-prepared system, 
uncovered situations may occur, since customer questions can be 
difficult to predict before the robots encounter real customers. 
We will perform a concrete analysis about the effects of situation 
coverage on the performance of a human-robot team in the 
following sections.  

IV. INTERACTION-MANAGEMENT TECHNIQUES  

In this section, we present the key techniques which enable us 
to build an efficient system for operating multiple robots in 
dialog-based interactions. First, we define the problem we are 
going to solve, which is managing the conflicting demands for 
operator attention among multiple robots. Then, we introduce 

techniques for addressing two key problems that arise from these 
conflicts. Finally, a switching algorithm will be presented that 
enables efficient teleoperation of multiple robots by integrating 
these techniques.  

A. Problem in Multi-Robot Control  

Before discussing details of these techniques, we first define 
the problem in multi-robot control that we are going to solve. 
We believe that the major problem in the teleoperation of a 
multi-robot team is the handling of conflicts when multiple 
robots require operator attention (i.e. are in critical phases) at 
the same time.  

 
Fig. 3. Two examples of three simultaneous interactions  

    Fig. 3 shows two examples of controlling three robots, 
illustrating how interactions can conflict. Fig. 3(a) is an ideal 
case, wherein the critical phases are non-overlapping, and 
robots can be controlled in sequence by allocating the operator 
to the robots in critical phases. Fig. 3(b) is a more realistic case 
when multiple robots are interacting with customers at the 
same time. As we can see, the critical phases overlap with each 
other, resulting in conflicting demands for operator attention.      
The conflicts have two effects that may cause interaction 
failures:  
1) The additional time spent waiting for an operator causes 

critical phases to get longer, making the customers wait a 
longer time after asking questions, which may result in 
failure to satisfy the customers.  

2) A customer may ask a question to one robot while the 
operator is busy with another robot, so the operator may 
not be in time to hear what the customer has asked, 
resulting in a failure of operation.  

Addressing the first problem, we adopted techniques from 
previous studies to mitigate customer frustration while waiting. 
To solve the second problem, we developed an audio buffering 
technique to prevent loss of information and enable efficient 
operation. Then using these techniques, a switching algorithm 
was developed that handles wait-time management and 
operator assignment as an integrated system.  
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B. Wait-Time Management  

    Two mechanisms can be applied from previous studies to 
mitigate customer frustration during long waiting time, which 
we refer to as Wait-Time Management.  
  

1) Proactive Timing Control (PTC)  
    Proactive timing control [21] is a technique that dynamically 
adjusts the timing of interactions in order to prevent conflicts 
when two or more robots need operator attention at the same time. 
PTC can be defined as a sequence of robot behaviors performed 
in the pre-critical phase to delay the entrance to a critical phase, 
such as utterances and gestures which keep the robot talking for 
a planned amount of time.  

 
Fig. 4. An implementation of proactive timing control  

    An actual implementation of a proactive timing control 
module can be described by Fig. 4. A “phrase group” is a core 
functioning unit in a PTC module. It is composed of a sequence 
of logically connected phrases, designed such that stopping the 
utterance after any phrase will still make sense in a conversation. 
An example phrase group and some of its phrases are listed 
below:  
  

Phrase Group:  
- Phrase 1: Today is the shopping mall’s 
anniversary. - Phrase 2: There are many interesting 
events.  
- Phrase 3: I can tell you about any of them.  
- Phrase 4: And I can give directions as well.  

- Phrase 5: …  
    The execution of a phrase group is controlled by a “sequential 
selector”, which determines whether to stop or continue PTC 
based on the operator’s availability. If the operator is available 
(i.e. has free time to control a robot), then PTC can be stopped, 
and the robot can proceed to the critical phase. Otherwise, the 
sequential selector will select the next phrase in the group to 
continue PTC. Phrases in a group are designed to be short 
enough that the time length of PTC can be controlled at a fine 
level of granularity. The detection of operator availability will 
be explained later when we present the switching algorithm.  
    As a phrase group only contains a finite number of phrases, 
multiple phrase groups can be prepared to cope with the case 
when the operator is still unavailable after the execution of a 
whole phrase group has finished. A “random selector” is used to 
randomly select a group after each execution of a phrase group. 
The reason for randomly selecting a group is that there are often 
bystanders when the robot is talking to a customer, and this 
random variation can help avoid giving customers the 

impression that robots are always saying the same thing when 
meeting any customer.  
    Proactive timing control can effectively prevent conflicts 
between critical phases. When multiple interactions are about to 
enter critical phases, the robots that cannot be attended by the 
operator will perform PTC to delay the entrance to the critical 
phase. From a customer’s perspective, PTC is executed before 
asking any question, while it is still the robot’s “turn” to speak, 
and thus the extra behaviors seem to naturally integrate into the 
flow of interaction.  
  

2) Conversational Fillers  
    Conversational fillers have been studied in [11] as a 
technique to mitigate a customer’s frustration while waiting. 
They can be used in critical phases when the customer has 
finished asking the question, but when it will still be some time 
before the operator will finish operation. During such time, the 
robot can use conversational fillers to mitigate the customer’s 
frustration by saying phrases such as “well...”, “let me think...”, 
“you know...”, or “uh...” Experiments [11] show that 
conversational fillers successfully moderate customers’ 
negative impressions towards long wait times.  

C. Audio Buffering  

    Audio buffering is a technique to prevent loss of information 
and enable operators to respond quickly when critical phase 
conflicts happen. The audio from the conversation between the 
customer and the robot is recorded into a buffer for each robot, 
thus even if the operator switches to a robot after the interaction 
has begun, it is still possible to listen to everything the 
customer has said.  

 
Fig. 5. Audio buffering and operator listening time  

    Fig. 5 illustrates the implementation of audio buffering. 
When the robot has finished speaking, it is assumed that the 
customer utterance begins, and the buffer begins recording 
audio. If the operator is switched to that robot sometime after 
this point, buffered audio is played back from the start of 
customer utterance.   
    Buffered audio can be played with faster speed while 
maintaining audibility, which enables the operator to spend less 
time to listen than the actual customer utterance duration. If we 
let K denote playback speed, then listening time (  ) is a 
function of operator delay ( ) and customer asking time  
( ), as in (3). The maximum is taken because listening can’t 
end before a customer finishes asking a question.  
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    (3)  
      
    Audio buffering can help ensure that no loss of 
conversational information occurs when the operator is 
switched to a robot after the critical phase has started. In 
addition, by using fast-playback, the operator needs less time 
to listen to a customer’s question, which shortens the overall 
operation time.  

D. Switching Algorithm  

    We next present a switching algorithm used in our 
teleoperation system which handles automatic operator 
assignment and robot phase planning based on the previously 
introduced techniques.  

 
Fig. 6. Queuing of robots for operator assignment  

    As in Fig. 6, two FIFO queues, called the “pre-critical queue” 
and “critical queue,” are maintained for robots in pre-critical and 
critical phases, sorted by phase start time. The operator is always 
assigned to the robot at the head of the critical queue, which is 
the first robot that started the critical phase.   
    There is a function for detecting whether an operator is 
available, which returns “true” if the operator can be assigned to 
the robot on time, and “false” otherwise. Using fast-playback, 
the critical phase can actually start slightly before the operator is 
assigned, by an amount equal to  of the customer 
asking time, because the operator’s listening time is  of the 
asking time. Hence, by comparing the estimated operation time 
of the robots in the critical queue against  of customer 
asking time, the decision of operator availability for a robot in 
the pre-critical queue can be made as follows:  
  

FUNCTION Is-Operator-Available (Robot R)  
    If (R is the head of pre-critical queue)  
        If 
( )  
            Return true;  
        Else  
            Return false;  
    Else  
        Return false;  
End  

  

    Here,  is the estimated operation time for i-th 
robot in the critical queue, which will be compared with start-
ahead time to decide whether to let a robot proceed to the critical 

phase. To utilize the algorithm, we need a valid estimation of 
operation time before operation has actually begun. As in (1), we 
model operation time as a combination of listening and actuation 
times, wherein listening time can be given from the estimated 
customer asking time, operator delay, and audio play-back time, 
as in (3). The next subsection will discuss an estimation method 
for actuation time.  
  

2) Estimation of Actuation Time  
In this section, we discuss the method of estimating an 

operator’s actuation time when multiple input methods exist in 
a teleoperation interface.  

In a teleoperation interface, there can be multiple input 
methods with different layouts and functionalities, and usually 
it is impossible to tell in a deterministic way which one will be 
used until the operation has begun. But if we acquire the 
knowledge about the probabilities of each input method to be 
used from statistics of a large number of operations, we can 
make a best estimation of operation time in a probabilistic way.  

Suppose there are n different input methods, and the 
probability distribution of actuation time for each input method 
is known. Let  denote the probability of the i-th input method 
to be used. Then, a penalty function in terms of loss of 
satisfaction can be defined by (4), where  and  denote 
estimated and actual actuation times, and  and  are the 
penalties in customer satisfaction incurred when wrong 
estimation increases customer wait time, according to (2).  
  

    (4)  
  
 If we let  denote the expected penalty for input 
method i, then we can calculate it by integrating the penalty 
value over the entire time span for actuation time assuming the 
probability density function of actuation time is known. For 
simplicity, we use a normal distribution to represent the 
distribution of actuation time for each input method. Then, the 
expected penalty for the i-th input method can be calculated by 
(5), where  is the probability density function of a 
normal distribution  for the actuation time of the i-th 
input method. Although other distributions can be used for 
modeling actuation time, as will be discussed in the section of 
operator data collection, the normal distribution is sufficient for 
describing operator actuation time in this study.     The expected 
penalty for estimation t is the expectation from all possible 
input methods weighted by the probabilities of their use, as in 
(6). The safest estimate of actuation time ( ) is taken 
as the time which minimizes the expected penalty, as in (7). 
Finally, the estimated operation time can be calculated as the 
sum of listening and actuation time, by combining (7), (3) and 
(1).  
  

    (5)  
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   (6)  

   (7)  
  
    As an example, Fig. 7 shows the expected penalties 
measured by satisfaction values when there are three input 
methods, namely simple choice, list choice and typing (see Sec. 
V-C for detailed explanation about each input method), each 
with actuation time being  ,  , 

 seconds, and have the same probability (  ) 
of being used. As the figure shows, when estimating actuation 
time to be 22 seconds, the expected penalty is the minimum, 
which is the best estimation.  
  

 
Fig. 7. Estimation of actuation time and expected penalty  

V. MEASURING MODEL PARAMETERS: USER STUDY  

A. Scenario  

    Data collections were conducted to obtain human data for our 
models of the customer and operator. To investigate the impact 
of complexity in dialog-based interactions, two scenarios were 
used.  
• Guide scenario: We assume that robots are working at a 

shopping center to provide route guidance. Customers ask 
questions about where some shops are, and robots answer 
the locations accordingly.  

• Seller scenario: Robots are assumed to be working as 
sellers at a PC shop. Customers come to ask various 
questions related to PC’s or peripherals, and robots provide 
accurate answers. Generally, such questions have higher 
complexity compared to the first scenario.     The first 
scenario represents a context in which customers are in a 
hurry and interactions are short. The second one is about a 
relatively complex scenario, when customers are not in such 
a hurry but need detailed information.  

  
Portrait of participants  
    Undergraduate Japanese students were recruited for data 
collections regardless of whether they had any background in 
robotics. We did not allow the same participants to take part in 
both data collections for operator and customer, because 
knowing how robots are operated may affect a participant’s 

evaluation when acting as a customer. Basic computer skills for 
daily life were required for participants acting as operators.  

B. Customer Data Collection 1) Procedure  
    Fifteen people participated (8 female, 7 male, mean 22 years 
old). Each participant took part in both scenarios. For each 
scenario, participants performed 16 interactions with a robot by 
asking different questions.   
    Two aspects of the robot’s behavior were varied between 
interactions. First, the duration of the robot’s speech preceding 
the asking of the question, which corresponds to the time when 
PTC behaviors would be executed, was varied among 0, 15, 30, 
and 45 seconds. Second, the delay until the robot responded to 
the question in the Critical phase was varied among 0, 5, 10, and 
15 seconds. Conversation fillers were used during this waiting 
time. In total, this resulted in 16 variations of timing settings. 
After each interaction, participants evaluated their satisfaction 
with an integer value from -5 to 5, where -5 and 5 indicate 
maximum negative and positive satisfaction. Each scenario was 
repeated twice to counter-balance the ordering effect.  
  

2) Results  
    Fig 8 shows the average satisfaction values for each scenario. 
The values form approximate planes in 3-D space, indicating 
that satisfaction is approximately linear in both PTC and wait 
time. By linear regression analysis using least squares, 
parameters of (1) were calculated as in Table I (decision 
coefficients  are 0.970 and 0.967 for each scenario, which 
indicate very good fitting). Asking and answering times were 
also measured, where μ and σ are mean and standard deviation.  
  

TABLE I  
PARAMETERS FROM CUSTOMER DATA COLLECTION  

Scenarios        

Customer  
Asking Time  

(s)   

Robot  
Answering 
Time (s)  

Μ  σ  μ  σ  
Guide  3.65  0.07  0.18  4.1  1.4  5.1  0.6  
Seller  3.68  0.04  0.14  5.8  1.8  10.6  1.7  

  
    It was verified that  for both scenarios, meaning 
people are generally more patient when waiting before than 
after asking. In the seller scenario, S0 is larger and  and  are 
smaller, indicating that customers tend to be more patient in 
that scenario. This seems to show that people’s tolerance of 
wait time is different depending on interaction complexity.  
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Fig. 8. Customer satisfaction in different scenarios  

C. Operator Data Collection  

We conducted another data collection to measure actuation 
time for robot operators, as a function of the input method used. 
1) Procedure  

For the operator data collection, sixteen people (7 female, 9 
male, mean 21 years old) participated in the two scenarios. 
Instead of setting up real robots and customers, we recorded 
audio from customer questions asked in the previous data 
collection, and used it to simulate customer-side interactions.  To 
explore the effect of input method on actuation time, operation 
time was measured using three input types: binary choice, list 
choice and typing. For the binary choice interface, two choices, 
including the correct response, were shown. The list choice 
interface was similar, but instead 20 choices were shown. For the 
typing interface, the operator directly entered the answer into a 
text field. Actuation time was measured as the duration from the 
end of audio play-back to the end of each operation. Within each 
of the two scenarios, the mean and standard deviation were 
computed for the measured actuation times for each input 
method. 2) Results  
    Table II shows the result in terms of mean and standard 
deviation of actuation time for each input type. It is necessary to 
find a mathematical model to approximate the distribution of 
actuation time in order to estimate operation time. One candidate 
is the normal distribution, which describes the distribution when 
most actuation times fall near a mean value and are 

symmetrically distributed. Another candidate commonly used in 
queueing theory [33] is the exponential distribution, which 
assumes an equal probability of actuation finishing at any 
moment, resulting in a long-tailed probability distribution. From 
an examination of the measured data points, we found that the 
normal distribution closely fits with our data set, and thus we 
used it as an approximation of actuation time distribution in this 
study.  

The data collection results indicate that the input method 
greatly affects the operator’s actuation time. Actuation time 
increased as the complexity of operation increased, with typing 
time substantially longer than the other two input methods, and 
selection from list choices took longer than binary choice. The 
operation of the seller scenario took longer than the guide 
scenario for each interface, which we attribute to the increased 
time required for both problem solving and command expression 
caused by the increased complexity of the conversation context.  
    In real-world applications, it is difficult to develop an 
interface in which all operations can be made by simple inputs, 
because of the difficulty of predicting what utterances will be 
necessary in a social interaction. Unexpected situations will 
require the operator to perform lower-level control such as 
typing. Hence, situation coverage, described in Section III-D, 
affects operation efficiency, as it influences the proportion of 
operations which can be made by simple or complex inputs.  
  

TABLE II  
MEASURED ACTUATION TIME FOR DIFFERENT INPUT TYPES  

Input Types   Binary  List  Typing  
guide  seller  guide  seller  guide  seller  

Actuation Time (s)  μ  1.9  2.2  3.1  5.5  32.9  45.0  
σ  0.6  0.9  1.9  4.8  11.9  18.5  

  

VI. INTERACTION STUDY USING SIMULATION   

    This modeling enables us build a simulation tool for 
studying social human-robot interactions in great detail. In this 
section, we will present the mechanism of the simulation tool, 
and present experimental results to validate its accuracy. Then, 
we will explore the effects of different techniques and 
configurations on the performance of a human-robot team 
using simulation.  

 

    Fig. 9 illustrates the basic workflow of the simulator. It is a 
computer program simulating a world of customers, robots, and 
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an operator, and it simulates interactions among them based on 
timings specified by interaction models. Interactions between 
customers and robots are simulated using a customer-robot 
interaction model (Sec. III-B), which specifies the structure of 
interaction phases and durations of each phase. Situation 
coverage (Sec. III-D) is an adjustable variable which specifies 
the proportion of customer requests that are quickly answerable. 
The operator model (Sec. V-C) specifies operation speed for 
different input methods, and the switching algorithm (Sec. IV-
D) is simulated for allocating operator tasks. To generate the 
output of the simulation, the customer satisfaction model (Sec. 
V-B) is used to calculate performance resulting from the 
simulated interactions.  

  
Fig. 10. Visualization of simulation  

    During execution, the simulation generates a timeline of 
interaction phases. Fig. 10 shows a visualization of one set of 
simulated interactions for a human-robot team consisting of one 
operator and four robots. Each column depicts the timeline of 
one robot’s interaction phases with the numbers in the left-hand 
side indicating the durations of each phase in seconds. The 
process of each phase is simulated as follows:  

- Pre-critical phase: Proactive timing control is simulated to 
control the length of this phase. This phase only proceeds to 
the next when the operator is available or anticipated to be 
available shortly, as described in Section IV-D.  

- Critical phase: This phase includes the customer’s question 
to the robot and the operator’s response, including listening 
time and actuation time. The distributions of customer 
asking time and operator actuation time were obtained 
through data collection, shown in Tables I and II, and 
listening time is calculated using by (3).  

- Post-critical phase: This phase includes the time required 
for the robot to execute answering behaviors. It is specified 
according to the scenario, designated as “Robot Answering 
Time” in Table I.  

- Non-critical phase: We simulate frequent customer arrivals 
with a normal distribution of  seconds between 
interactions in all the simulations.  

    As the output of the simulation, customer satisfaction can be 
calculated using by (2), wherein the waiting times are counted as 
follows:  

- : the duration of pre-critical phase.  
- : the duration of operator’s response time.  

    From the satisfaction results of the individual interactions, 
we calculate the team’s performance as the sum of customer 
satisfaction from all robots per unit amount of time as in (8), 
supposing  is the number of robots,  is the number of 

interactions conducted by i-th robot, and  is the 
satisfaction value of j-th interaction conducted by the i-th robot. 
This equation reflects the efficiency of the robot team in  
“producing” customer satisfaction in a unit amount of time.  
  

    (8)  
  

B. Validation of Simulation  

    An experiment was conducted to determine whether 
simulation can provide a reliable result in comparison with 
human operators. Fifteen people participated (6 female, 9 male, 
mean 20 years old).  
  

1) Procedure  
    The validation was conducted by comparing the 
performance of robot teams (a) operated by participants and (b) 
from simulation, for each team size from 1 to 8. If the two 
conditions  provide similar results for each number of robots, 
it will verify that simulation can provide trustworthy estimation.     
For condition (a), we did not set up real robots and customers, 
but instead recorded audio of people asking questions and used 
them to reproduce customer requests. By providing operators 
with an experience similar to that of real teleoperation, we 
expect that operation time will be similar to that for a real robot 
operation task. Since the objective of this evaluation was to 
verify if simulation can provide similar timing compared to 
human operators, such settings are enough to generate a valid 
comparison. For condition (b), the measured interaction timing 
parameters in Tables I and II were used in the simulation.  
    The guide scenario as described in Section V-A was set for 
both conditions. Situation coverage was set to 90%, with list 
choice and typing available for covered and uncovered 
situations, respectively.  
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2) Results  
    Fig. 11 shows the comparison of mean performance1 from 
simulation and participants, where standard error of participant 
data is also depicted. Although slight differences in some data 
points exist due to variation of performance by participants, the 
changes of performance show the same trend, and both results 
indicate the fan-out being 3 by forming performance plateaus 
of similar shapes. Thus, we can conclude that simulation 
provides reasonable estimation regarding actual performance 
when using data measured from real interactions.  

  

 
Fig. 11. Comparison of performance between human operators and simulation  

C. Interaction Studies with Simulation  

 We conducted simulations to explore the effect of different 
techniques and metrics on the performance of a human-robot 
team. First, we conducted validations on the effectiveness of 
using interaction management techniques such as fast-playback 
and proactive timing control. Then, we explored how metrics 
such as situation coverage and operation efficiency affect team 
performance. In the simulations described throughout this 
section, we examined the guide and seller scenarios described in 
Section V-A under 90% situation coverage, where operation 
using list and typing are simulated respectively for covered and 
uncovered situations.  
  

1) Validation of Estimation and Fast-Playback  
    To validate the effectiveness of the operation time estimation 
and fast-playback techniques, simulations were conducted under 
three conditions on different numbers of robots for each scenario. 
For comparison, we simulated a baseline condition, in which 
neither technique was used – that is, robots were only permitted 
to enter critical sections when an operator was already available. 
Then, we compared it with the conditions of using only 

                                                           
1 Results regarding performance are expressed in units of “satisfaction per 

minute” throughout this paper.  

estimation and using both estimation and 1.5-time fast-playback. 
We did not set a condition of using only fast-playback, because 
the function of fast-playback necessarily requires estimating 
operation time ahead, hence it cannot be used without estimation. 
The average performance from 1000 simulations, each 
simulating a 10-minute teleoperation session, was calculated for 
each condition.  
  

 
   

Fig. 12. Validation of estimation and fast-playback in guide scenario   
(The standard errors for each data point are between 0.04 and 0.13.)  

 
   

Fig. 13. Validation of estimation and fast-playback in seller scenario   
(The standard errors for each data point are between 0.03 and 0.09.)  

    Results in Fig. 12 and Fig. 13 indicate that both conditions 
using the proposed techniques outperform the baseline in both 
scenarios. The effect of estimation is most valuable when 
combined with fast-playback, because ideally the pre-critical 
phase can be shortened by  times the asking time 
when playback speed  is greater than 1. Even when not using 
fast-playback, estimation is effective because it alleviates the 
need for the operator to be present while to the robot is asking 
for the customer’s question, which usually takes 2~3 seconds. 
However, as we can see in Fig. 13, the improvement in the  
“estimation only” condition is not as significant in the seller 
scenario as it is in the guide scenario. This is because of the 
higher variance of operation time in this condition (see Table 
II), which results in a higher likelihood of wrong estimation.  
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2) Validation of Proactive Timing Control  
We next examined the effectiveness of proactive timing 

control. For this comparison, we created a “No PTC” condition, 
in which interactions go into critical phase no matter whether 
the operator is available. We compared this with a “With PTC” 
condition, in which the pre-critical phase will last until the 
operator is available. Neither estimation nor fast-playback 
were used in this comparison. The average performance from 
1000 simulations, each simulating a 10-minute teleoperation 
session, was calculated for each condition.  
  

 
Fig. 14. Validation of PTC in guide scenario  

 
Fig. 15. Validation of PTC in seller scenario  

    Fig. 14 and 15 show the simulation results in each scenario. In 
both scenarios, the two conditions showed similar performance 
up to the number of robots for optimal fan-out (which was 2 for 
these settings), and then performance in the  
“No PTC” condition dropped severely for larger numbers of 
robots. The simulation results indicate that the drop of 
performance can be greatly reduced for larger numbers of robots 
when using PTC, because the customer’s waiting time takes 
place mostly in the pre-critical phase, causing less of a drop in 
satisfaction compared with waiting in the critical phase.  
  

3) Effect of Situation Coverage  
    We evaluated the effect of situation coverage by comparing 
situation coverage settings of 100%, 90%, 80%, 70% and 60% 
for the two scenarios. The 100% situation coverage condition 
represents the extreme case when all operations can be made 
using list choice, while 60% condition simulates a situation 

where a large proportion of operations need typing. The average 
performance from 1000 simulations, each simulating a 10-
minute teleoperation session, was calculated for each condition.  

 
Fig. 16. The effect of situation coverage in guide scenario  

 
Fig. 17. The effect of situation coverage in seller scenario  

    As Figs. 16-17 show, the performance increases as situation 
coverage increases in both scenarios. The reason for this change 
in performance and fan-out is that situation coverage affects the 
statistical distribution of operation time. Equation (9) shows that 
the mean operation time can be estimated as the proportional 
expectation of operation time for covered and uncovered 
situations. For example, using the timing data from Table II, we 
can calculate the expected operation times in the guide scenario 
for SC values of 100% and 90% to be 3.1 and 6.1 seconds 
respectively, which means the operation speed when all 
situations are covered is almost twice as fast as for 90% SC, 
which results in a large improvement of performance.  
  

    (9)  
  

4) Effect of Operation Efficiency  
    We next evaluated the effect of operation efficiency on 
performance by simulations with different values of operation 
time for the two scenarios. The baseline condition for this 
comparison used the operation times measured in data 
collection. We compared this with operation times 25% and 
50% faster and slower. Situation coverage was set as 90% with 
list and typing inputs. The average performance from 1000 
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simulations, each simulating a 10-minute teleoperation session, 
was calculated for each condition.  
  

 

Fig. 18. The effect of operation efficiency in guide scenario  

 

Fig. 19. The effect of operation efficiency in seller scenario  

    Figs. 18 and 19 show the simulation results in each scenario. 
Similar to the effect of situation coverage, change of operation 
time causes change of performance and fan-out, with faster 
operation resulting in higher performance and larger fan-out 
numbers. These results indicate that reducing operation time is 
an effective way of improving team performance. In practice, 
improvement of operation efficiency could come from interface 
design and training effects. A concrete example of improving 
operation efficiency through good interface design and operator 
training will be given in the next section.  

VII.  DEPLOYMENT USING SIMULATION : A  CASE STUDY  

    In this section, we present a case study in deploying multiple 
social robots for a real-world application. The research goal is to 
verify the effectiveness of simulation as a strong tool in each 
stage of the development process, which finally leads to a 
successful deployment of a human-robot team in the field.  

A. Scenario  

    A large shopping mall containing more than 80 shops and 
other facilities wanted to use social robots to attract customers 
by providing some useful service for its anniversary during a 
period of four days. Our task was to deploy robots which could 
provide services including route guidance and information 
provision given one month for preparation before the 

anniversary. Using a larger number of robots was preferable 
because they can attract more customers in the same amount of 
time, but the quality of service should also be guaranteed when 
the number of robots increases.  

B. Setup  

    ROBOVIE-II humanoid communication robots were used in 
our case study. The teleoperation interface for controlling the 
robots is shown in Fig. 20. It contains a text-to-speech 
component (area “a”), lists (area “b”) of pre-built behaviors for 
answering questions, and a map interface (area “c”), by which 
the pre-built route guidance behaviors can be triggered when 
each button representing a shop is clicked.  
  

 Fig. 
20. The teleoperation interface  

C. Procedure  

 

    We divided the deployment procedure into several stages 
with each stage focused on specific tasks, as shown in Fig. 21. 
The preparation stages include behavior design, UI design and 
operator training, wherein simulation was used to estimate 
performance and verify the completeness of each stage. The last 
two stages needed robots working in the field. A test of situation 
coverage was conducted before actual deployment, and robots 
were deployed for four days of the anniversary once good 
performance could be ensured through the previous stages. 
During the time when the robots were deployed in the shopping 
mall, real performance was measured based on customer 
waiting time.  

D. Results  

    We present the results of the whole process including 
preparations and field deployment. For the preparation stages, 

  
Fig .   2 .  1 The d eployment  procedure   
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we state the tasks and how simulation was used to help our 
tasks in each stage; for deployment results, we show actual 
performance of robots working in the field.  
  

1) Behavior Design  
    At the first stage, robot behaviors for answering customers’ 
questions were designed and implemented. The target of this 
stage was to implement a sufficient number of built-in 
behaviors to achieve a certain level of situation coverage in 
order to enable more robots to be deployed.  
    We calculated the lower boundary of situation coverage 
necessary for different fan-out targets by simulating the 
performance using various values of situation coverage, as we 
did in Section VI. The model parameters for simulation were 
chosen from the guide scenario data in Table I-II, which 

corresponds to the scenario of our case study. One difference 
was that the system for our case study included a “map choice” 
entry interface, but no “binary choice.” We modeled this 
difference by eliminating binary choice from the model and 
using the list input actuation time from the data collection for 
both map and list inputs in the case study, since the number of 
options in the map interface and the list interface were similar. 
We thus modeled list/map choice as being used for covered 
situations, and typing for uncovered situations. The results are 
shown in the first row of Table III, indicating that 40% 
situation coverage would allow operation of one robot with 
positive performance, 83% would enable two, and a maximum 
of three robots could be controlled with situation coverage of 
at least 91%. These results also show that even if situation 
coverage is increased up to 100%, four robots would not 
perform better than three.  
  

TABLE III  
MINIMUM SITUATION COVERAGE REQUIRED FOR DIFFERENT FAN-OUTS (WITH 

POSITIVE PERFORMANCE) IN GUIDE SCENARIO  

                                                           
2 We refer to the “knowledge provider” operations as uncovered situations in 

that paper.  

 Fan-out  1  2  3  4  

Lower 
boundary 
of SC  

From data collection  40%  83%  91%  ---  
1st operator training  52%  99%  ---  ---  
2nd operator training  41%  84%  91%  ---  

    To gain some knowledge about the relationship between 
situation coverage and required number of robot behaviors, we 
refer to a previous study in [7], wherein a robot provided route 
guide service in a shopping mall. By implementing guide 
behaviors for all possible shops and facilities, situation coverage 
reached over 98% on average per day2. This indicates that the 
91% situation coverage necessary for using three robots should 
be possible if we can implement enough behaviors. Since using 
more robots can attract more customers for the shopping mall, 
we set our target to use three robots, which is the maximum fan-
out for this application when situation coverage is over 91%.  

 In Fig. 22, graph (a) shows the progress of the number of 
behaviors implemented during the field trial. 110 behaviors were 
implemented before operator training, and we gradually 
increased them up to 133 by the time of deployment, which 
included guiding behaviors for the shops and facilities in the 
shopping mall, behaviors for answering possible questions about 
the anniversary, and behaviors to play with children considering 
that many families with children would visit the shopping mall. 
As shown in graph (d), we were able to achieve 95.7% situation 
coverage with 122 behaviors in the test, and over 99.1% situation 
coverage was measured during the field deployment after 
increasing the number of behaviors up to 133.  
  

2) UI Design and Operator Training  
When the behaviors were designed, a corresponding  user 

interface was implemented to control behaviors using three 
types of inputs: list choice, map selection, and typing, shown in 
Fig. 20. Here, the list choice and map selection inputs 
correspond to the operation methods for two types of covered 
situations: the list choice is for triggering play behaviors and 

  
Fig. 22. (a) The number of implemented behaviors (▲), (b) Fan-out from simulation (×),  

(c) Mean operator actuation time for the list choice and map inputs (●), (d) Situation coverage (◆) during the field trial  
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answers to shopping mall information, and the map selection is 
for triggering answers to guide people to the locations of shops. 
Typing is still used to directly enter answers to questions which 
are not covered in the system. The operator was trained to 
manipulate the newly implemented UI, and the target of this 
stage was to get an acceptable operation speed which could 
result in fan-out of three robots as planned in the previous stage.  
Fig. 22 shows how our estimates of average operation time and 
potential robot fan-out progressed over time. When the full set 
of 110 behaviors and corresponding inputs had been 
implemented, we decided that most preparation for robot 
functionalities and operation interface were complete. At this 
point, we conducted a short period of operator training and 
measured operation time, revealing that the mean actuation time 
for list and map choices had increased to 13.5 seconds – much 
longer than in our initial data collection. We then conducted a 
simulation with the new operation times to evaluate whether the 
system was ready for the field deployment. As shown in Table 
III, this simulation indicated that 99% situation coverage would 
be needed to achieve a fan-out of two, and it would be 
impossible to make fan-out to be three even if the situation 
coverage reached 100%.  
 These predictions were disappointing, so we looked for the 
reason why predicted performance was so low. We found that 
the actuation time for the map inputs was extremely long, as 
shown in Fig. 23. Since these operation times did not enable us 
to meet our target fan-out of three robots, our development 
entered a re-design cycle. From the operator’s feedback, we 
found that operation with the map was difficult because opaque 
buttons inhibited reading of the map. As a solution, we made 
the buttons semi-transparent as in Fig. 24, so that the operator 
could easily understand the locations represented by the 
buttons.   
    After conducting a second training with the redesigned UI, 
operation time was measured again. As indicated by Fig. 22 and 
Fig. 23, operation time was reduced significantly, with the mean 
actuation time for list and map inputs being 3.7 seconds. Based 
on these measurements, we once again used the simulation to 
compute the minimum SC required to attain different levels of 
fan-out. As the last row in Table III shows, these updated results 
were quite consistent with our original predictions based on the 
initial data collection. Based on the operator’s improved 
operation speed, we now predicted that an SC of 91% would be 
sufficient for a fan-out of three robots.   
  

 

Fig. 23. Actuation time for list choice and map inputs before and after UI 
redesign  

 
Fig. 24. Map UI before and after redesign  

3) Test and Deployment  
    As situation coverage can only be measured from real 
interactions, a test in the shopping mall was conducted to see if 
the designed behaviors would result in high situation coverage 
by letting the robot meet customers before actual deployment. 
One robot was used for this test because the simulation results in 
Table III show that only 41% situation coverage was needed for 
one robot to get positive performance, which was an easy-to-
satisfy condition when having the amount of behaviors prepared. 
Also by using one robot, we could minimize the risk of low 
performance caused by uncovered situations, and still make a 
valid test of SC from real interactions.  
    The test was conducted in one afternoon, and among 47 
interactions with customers, 95.7% situation coverage was 
measured (Fig. 22), which was higher than our expectation of 
91%, hence we could proceed to the final deployment of 
human-robot team.  
    Only one robot was deployed during the first two days of the 
anniversary. These days were weekdays, when very few 
customers typically went to the shopping mall, so multiple 
robots would have few chances to work simultaneously. Three 
robots were deployed on each of the last two days, which were 
weekend days when a large number of customers were 
expected. Fig. 22 shows the situation coverage, operator 
performance and fan-out from simulation during each day of 
deployment. From the figure we can see that the operator‘s 
actuation times stayed low during the four days of deployment, 
and since high situation coverage was retained, the fan-out 
predicted by the simulation remained at three robots each day.  

Fig. 25 shows an example scene of three robots 
simultaneously interacting with customers during the field trial. 
Each column describes the actual phrases used in conversations 
between customers and robots 3 , as well as the operator’s 
activities during each interaction. As we can see, the second 
and third interactions started while the operator was still busy 
controlling the first, but through proper usage of proactive 
timing control, the operator had enough time to switch to the 
other robots later. In the third interaction, the operator was 
switched to the robot after the customer had already started 
asking the question, but since customer’s voice was recorded 
into the audio buffer, the operator could still listen to it and   
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control the robot to give the answer. As a result, the system 
could successfully handle simultaneous interactions by 
managing customers’ wait time to achieve high satisfaction.     
Table IV and Fig. 26 show the number of interactions and 
customer waiting time measured on each day. In Table IV, we 
can see that waiting times before and after questions increased 
by up to 2 seconds for the three-robot case in the last two days, 
which would normally lead to lower satisfaction in individual 
interactions. However, as the robots conducted a larger number 
of interactions as a team, much higher team performance was 
achieved, compared with the single-robot case.  

  
TABLE IV  

CUSTOMER WAIT TIME AND NUMBER OF INTERACTIONS  
Days  1  2  3  4  

Mean Customer  
Wait Time (s)  

Before4  0.0  0.0  1.2  2.0  
After  3.6  3.9  5.3  5.0  

Number of Interactions  34  26  117  108  
  

3 For the robots, only phrases were listed in the figure, but the robots 
also executed proper gestures while speaking.  

4 The wait time before questions does not include the time for a robot 
to do a necessary self-introduction at the beginning of each interaction.  

 
Fig. 25. An example scene of three simultaneous interactions in the field trial  

  

 
Fig. 26. Performance in each day of field deployment  

4) Summary  
    By using the simulations based on interaction models in each 
stage of the deployment process, the following benefits were 
achieved:  
  

1. Ensuring Quality of Service  
    Good service was ensured before the robots met real 
customers, because simulations were used to estimate 
performance before actual robot deployment. This feature is 
important for social robot applications, because putting robots 
outside without guaranteed performance may not only affect the 
current jobs, but also have the risk of making customers 
disappointed and lose interest in robots in the long term.  

2. Saving Development Time  
    Development time was saved because we were able to 
calculate the minimum required achievement for each stage 
using simulation. For example, once situation coverage was 
confirmed to be high enough to achieve the fan-out target, no 
more behavior development was required. Without such a 
“doneness” criterion, it is difficult to decide when to stop the 
behavior development process. Another example was when the 
operator’s performance was confirmed by the simulation to be 
good enough to achieve the fan-out target, after which no more 
interface design or training was required. In real-world projects, 
time and resources for development are often limited, and the 
ability to predict system performance and identify minimum 
requirements can help in planning and managing resources 
efficiently.  

VIII.  DISCUSSION  

A. Design Implication  

    This study demonstrated the possibility of modeling 
conversational human-robot interaction dynamics and using 
simulation for predicting the optimal robot-to-operator ratio in 
advance of actual robot deployment, as well as for managing 
the development process of social robot applications.     The 
type of application determines the expected duration of 
utterances and the wait tolerance of the customers. As shown 
by the data from user study, simple dialogs often have short 
durations of speech, both for questions the customer asks and 
for responses the robot gives, and customers have a low 
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tolerance for waiting. In contrast, complex dialogs often have 
longer durations of speech and customers have a higher wait 
tolerance. Such model parameters of dialog duration and 
customer tolerance for wait time can be measured for a given 
application scenario.  
    The design of UI affects the operator’s performance. If we 
can prepare quick-to-actuate inputs for many situations, we can 
expect better performance. The metric of situation coverage is 
associated with overall operation time by indicating the 
proportion of interactions that can be responded to using quick 
inputs versus inputs that are slower to actuate.   
    The level of situation coverage that can be achieved is a 
critical factor in determining the optimum robot-to-operator 
ratio for an application. If higher situation coverage can be 
obtained, it means a larger proportion of operations can be 
quickly made using simple inputs, and thus more robots can be 
controlled with optimum performance. But increasing situation 
coverage carries a cost in terms of effort to prepare robot 
behaviors, and such cost can be ever-increasing as higher 
situation coverage is required. For example, the number of 
robot behaviors to increase situation coverage from 90% to 
100% would be much larger than that of increasing it from 40% 
to 50%, because a huge number of behaviors should be 
prepared for various kinds of rarely-happening but possible 
situations. Therefore, we need to carefully consider the trade-
off between the effort to increase situation coverage and the 
performance gained from such effort.  

B. Fan-out as a Function of Individual Operator     In 
this study, we modeled operation time using average values 
taken from a group of subjects, but the difference in 
performance among individuals is also an important factor 
affecting fan-out. This is indicated by the fact that standard 
deviations of performance on subjects were very large in our 
experiment to validate the simulation (Sec. VI-B). This means 
that even though the simulation provided accurate prediction 
of fan-out on average, variations in operation capability 
between different operators may result in different levels of 
fan-out that can be attained.  
    The dependency of fan-out on operator performance is also 
reflected in the discussion of operator training in the case study. 
The operation for the list and map inputs was slow at first, which 
resulted in a maximum fan-out of only one robot. Then, after 
redesign of interface and more training for the operator, the fan-
out increased to three robots. The list inputs were not redesigned 
throughout the measurements, but the operation speed still 
increased, which indicates the training effect.      Therefore, to 
get more accurate computation of fan-out, we can use simulation 
for an operator based on individual measurements taken directly 
from that operator; even for the same operator working on the 
same UI, measurement should be updated after training has been 
conducted.  

C. Possible Extension of Situation Coverage     A 
situation is defined to be either covered or uncovered as a 
binary value, but we think it is possible to extend this concept 
for more complex situations. For a covered situation, there can 
be more than one way for an operator to address it, such as the 

list choice and map interfaces used in the case study. The 
operation with the map took longer time than with the list, 
which means the situations that can be handled by list and map 
caused different consequences on operation time. Hence, a 
finer-grained division of situations might be needed to predict 
the distribution of operations more accurately.  

D. Limitations and Future Work  

We modeled operation time by implicitly including operator’s 
thinking time into the component of actuation time. This 
approach proved to be useful for estimating operation time in the 
short-term interactions addressed in this study, wherein the 
operator’s job is mainly speech recognition, and tasks such as 
problem solving or logical thinking are not considered. But as 
the complexity of operation increases, an improved modeling of 
operation time might be needed to consider the increased 
workload in problem solving. This may include more precise 
modeling of the various components of operation time and their 
probability distributions.  

In this study, we modeled customer satisfaction as a function 
of the absolute wait times of the customer during different 
conversation stages. However, it seems possible that the drop in 
customer satisfaction could actually be a function of the 
difference between expected and actual wait times, and an 
extension of the model to consider this possibility might produce 
more accurate predictions of customer satisfaction.   

The interaction models proposed in this study focus primarily 
on timing, and they do not consider other psychological or 
environmental factors such as interaction spaces, gaze, or 
scaffolding, which in some cases may significantly affect the 
results of interactions [25]. Due to this limitation, the usability 
and effectiveness of the models and interaction management 
system should be carefully considered in the context of the target 
interaction scenario.  

IX.  CONCLUSION  

  
We have achieved practical modeling of human-robot teams 

for conversational interactions, which enables us to describe 
operator and robot activities, and to predict customer 
satisfaction from interactions. We have introduced several 
techniques, which we have demonstrated to be useful in 
managing wait time during interactions and in enabling smooth 
assignment of tasks to an operator. A simulation tool was 
developed to predict the fan-out and performance of a human-
robot team. This simulation tool has enabled us to study the 
impact of various factors on the effectiveness of multi-robot 
control, and to make valid predictions of team performance 
without actual robots. A case study was conducted to show the 
usefulness of simulation in the deployment process for social 
robots in a real-world project. Overall, we believe that this 
study provides a powerful method of designing a teleoperation 
system for controlling multiple social robots.  
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